You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
Noncrystalline (NC) solids, as is well known, lack the long range order of crystals. Accordingly, they exhibit scattering, e.g., x-ray, electron, and neutron, but not the diffraction patterns characteristic of crystals. The intensity distributions from NC solids are usually transformed into radial distribution functions (RDF), but the interpretation of the RDF's is not unique. The lack of long-range order, and the non-uniqueness of the structural interpretation, have constituted the main obstacles to the usual solid state physics approach which has been so successful in dealing with crystals. As a corrolary, questions of local order and structure have frequently been de-emphasized. This mono...
Hydrogen plays an important role in silicon technology, having a profound effect on a wide range of properties. Thus, the study of hydrogen in semiconductors has received much attention from an interdisciplinary assortment of researchers. This sixteen-chapter volume provides a comprehensive review of the field, including a discussion of hydrogenation methods, the use of hydrogen to passivate defects, the use of hydrogen to neutralize deep levels, shallow acceptors and shallow donors in silicon, vibrational spectroscopy, and hydrogen-induced defects in silicon. In addition to this detailed coverage of hydrogen in silicon, chapters are provided that discuss hydrogen-related phenomena in germanium and the neutralization of defects and dopants in III*b1V semiconductors. Provides the most in-depth coverage of hydrogen in silicon available in a single source**Includes an extensive chapter on the neutralization of defects in III*b1V semiconductors**Combines both experimental and theoretical studies to form a comprehensive reference