You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book addresses issues pertinent to mechanics and stress generation, especially in recent advanced cases of technology developments, spanning from micrometer interconnects in solar photovoltaics (PV), next-gen energy storage devices to multilayers of nano-scale composites enabling novel stretchable/flexible conductor technologies. In these cases, the mechanics of materials have been pushed to the extreme edges of human knowledge to enable cutting-edge, unprecedented functionalities and technological innovations. Synchrotron X-ray diffraction, in situ small-scale mechanical testing combined with physics-based computational modeling/simulation, has been widely used approaches to probe thes...
In an attempt to meet the demand for new ultra-high strength materials, the processing of novel material configurations with unique microstructure is being explored in systems which are further and further from equilibrium. One such class of emerging materials is the so-called nanophased or nanostructured materials. This class of materials includes metals and alloys, ceramics, and polymers characterized by controlled ultra-fine microstructural features in the form oflayered, fibrous, or phase and grain distribution. While it is clear that these materials are in an early stage of development, there is now a sufficient body of literature to fuel discussion of how the mechanical properties and ...
This book collects authoritative perspectives from global experts to project the emerging opportunities in the field of lithium-ion batteries.
The aim of this major reference work is to provide a first point of entry to the literature for the researchers in any field relating to structural integrity in the form of a definitive research/reference tool which links the various sub-disciplines that comprise the whole of structural integrity. Special emphasis will be given to the interaction between mechanics and materials and structural integrity applications. Because of the interdisciplinary and applied nature of the work, it will be of interest to mechanical engineers and materials scientists from both academic and industrial backgrounds including bioengineering, interface engineering and nanotechnology. The scope of this work encomp...
The subject of mechanical behavior has been in the front line of basic studies in engineering curricula for many years. This textbook was written for engineering students with the aim of presenting, in a relatively simple manner, the basic concepts of mechanical behavior in solid materials. A second aim of the book is to guide students in their laboratory experiments by helping them to understand their observations in parallel with the lectures of their various courses; therefore the first chapter of the book is devoted to mechanical testing. Another aim of the book is to provide practicing engineers with basic help to bridge the gap of time that has passed from their graduation up to their ...
Nanoindentation is ideal for the characterization of inhomogeneous biological materials. However, the use of nanoindentation techniques in biological systems is associated with some distinctively different techniques and challenges. The book presents the basic science of nanoindentation, including the background of contact mechanics underlying indentation technique and the instrumentation used to gather mechanical data. It provides perspectives that are optimized for biological applications, including discussions on hydrated materials and adaptations for low-stiffness materials. The book also covers the applications of nanoindentation technique in biological materials. Highlighting current challenges, it concludes with an insightful forecast of the future.
Discover a novel approach to the subject, providing detailed information about established and innovative mechanical testing procedures.
Containing almost 250 technical and review papers, these proceedings form an authoritative, state-of-the-art review of this important multidisciplinary topic. Emphasis is placed on the study of the strength of mechanical properties of materials and their dependence on the microstructure and defect arrangements. Areas covered include: dislocations; dislocation arrangements; plastic deformation; strengthening mechanisms; cyclic deformation and fatigue; plastic deformation at high temperatures; fracture; modern strengthening methods in steels; boundaries and interfaces.
This book gives an overview of nanostructures and nanomaterials applied in the fields of energy and organic electronics. It combines the knowledge from advanced deposition and processing methods of nanomaterials such as laser-based growth and nanopatterning and state-of-the-art characterization techniques with special emphasis on the optical, electrical, morphological, surface and mechanical properties. Furthermore it contains theoretical and experimental aspects for different types of nanomaterials such as nanoparticles, nanotubes and thin films for organic electronics applications. The international group of authors specifically chosen for their distinguished expertise belong to the academic and industrial world in order to provide a broader perspective. The authors take an interdisciplinary approach of physics, chemistry, engineering, materials science and nanotechnology. It appeals to researchers and graduate students.
During the past few years, scientists have achieved significant successes in nanoscience and technology. Nanotechnology is a branch of science that deals with fine structures and materials with very small dimensions - less than 100 nm. The composite science and technology have also benefits from nanotechnology. This book collects new developments about diamond and carbon composites and nanocomposites and their use in manufacturing technology.