You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A presentation of results in p-adic Banach spaces, spaces over fields with an infinite rank valuation, Frechet (and locally convex) spaces with Schauder bases, function spaces, p-adic harmonic analysis, and related areas. It showcases research results in functional analysis over nonarchimedean valued complete fields. It explores spaces of continuous functions, isometries, Banach Hopf algebras, summability methods, fractional differentiation over local fields, and adelic formulas for gamma- and beta-functions in algebraic number theory.
This is an introduction to p-adic analysis which is elementary yet complete and which displays the variety of applications of the subject. Dr Schikhof is able to point out and explain how p-adic and 'real' analysis differ. This approach guarantees the reader quickly becomes acquainted with this equally 'real' analysis and appreciates its relevance. The reader's understanding is enhanced and deepened by the large number of exercises included throughout; these both test the reader's grasp and extend the text in interesting directions. As a consequence, this book will become a standard reference for professionals (especially in p-adic analysis, number theory and algebraic geometry) and will be welcomed as a textbook for advanced students of mathematics familiar with algebra and analysis.
This volume contains papers based on lectures given at the 12th International Conference on p-adic Functional Analysis, which was held at the University of Manitoba on July 2-6, 2012. Through a combination of new research articles and survey papers, this book provides the reader with an overview of current developments and techniques in non-archimedean analysis as well as a broad knowledge of some of the sub-areas of this exciting and fast-developing research area.
Developing the Itô calculus and Malliavin calculus in tandem, this book crystallizes modern day stochastic analysis into a single volume.
A self-contained textbook which opens up this challenging field to newcomers and points to areas of future research.
This volume contains the proceedings of the Tenth International Conference on $p$-adic and Non-Archimedean Analysis, held at Michigan State University in East Lansing, Michigan, on June 30-July 3, 2008. This volume contains a kaleidoscope of papers based on several of the more important talks presented at the meeting. It provides a cutting-edge connection to some of the most important recent developments in the field. Through a combination of survey papers, research articles, and extensive references to earlier work, this volume allows the reader to quickly gain an overview of current activity in the field and become acquainted with many of the recent sub-branches of its development.
An introduction, suitable for beginning graduate students, showing connections to other areas of mathematics.
A comprehensive, graduate-level treatment of unit equations and their various applications.
This contributed volume focuses on various important areas of mathematics in which approximation methods play an essential role. It features cutting-edge research on a wide spectrum of analytic inequalities with emphasis on differential and integral inequalities in the spirit of functional analysis, operator theory, nonlinear analysis, variational calculus, featuring a plethora of applications, making this work a valuable resource. The reader will be exposed to convexity theory, polynomial inequalities, extremal problems, prediction theory, fixed point theory for operators, PDEs, fractional integral inequalities, multidimensional numerical integration, Gauss–Jacobi and Hermite–Hadamard type inequalities, Hilbert-type inequalities, and Ulam’s stability of functional equations. Contributions have been written by eminent researchers, providing up-to-date information and several results which may be useful to a wide readership including graduate students and researchers working in mathematics, physics, economics, operational research, and their interconnections.
Provides comprehensive coverage of the most recent developments in the theory of non-Archimedean pseudo-differential equations and its application to stochastics and mathematical physics--offering current methods of construction for stochastic processes in the field of p-adic numbers and related structures. Develops a new theory for parabolic equat