You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The series is devoted to the publication of high-level monographs on all areas of mathematical logic and its applications. It is addressed to advanced students and research mathematicians, and may also serve as a guide for lectures and for seminars at the graduate level.
Primarily consisting of talks presented at a workshop at the MSRI during its "Logic Year" 1989-90, this volume is intended to reflect the whole spectrum of activities in set theory. The first section of the book comprises the invited papers surveying the state of the art in a wide range of topics of set-theoretic research. The second section includes research papers on various aspects of set theory and its relation to algebra and topology. Contributors include: J.Bagaria, T. Bartoszynski, H. Becker, P. Dehornoy, Q. Feng, M. Foreman, M. Gitik, L. Harrington, S. Jackson, H. Judah, W. Just, A.S. Kechris, A. Louveau, S. MacLane, M. Magidor, A.R.D. Mathias, G. Melles, W.J. Mitchell, S. Shelah, R.A. Shore, R.I. Soare, L.J. Stanley, B. Velikovic, H. Woodin.
"The infinite! No other question has ever moved so profoundly the spirit of man; no other idea has so fruitfully stimulated his intellect; yet no other concept stands in greater need of clarification than that of the infinite." - David Hilbert This interdisciplinary study of infinity explores the concept through the prism of mathematics and then offers more expansive investigations in areas beyond mathematical boundaries to reflect the broader, deeper implications of infinity for human intellectual thought. More than a dozen world‐renowned researchers in the fields of mathematics, physics, cosmology, philosophy, and theology offer a rich intellectual exchange among various current viewpoin...
The stationary tower is an important method in modern set theory, invented by Hugh Woodin in the 1980s. It is a means of constructing generic elementary embeddings and can be applied to produce a variety of useful forcing effects. Hugh Woodin is a leading figure in modern set theory, having made many deep and lasting contributions to the field, in particular to descriptive set theory and large cardinals. This book is the first detailed treatment of his method of the stationary towerthat is generally accessible to graduate students in mathematical logic. By giving complete proofs of all the main theorems and discussing them in context, it is intended that the book will become the standard ref...
This book is a brief and focused introduction to the reverse mathematics and computability theory of combinatorial principles, an area of research which has seen a particular surge of activity in the last few years. It provides an overview of some fundamental ideas and techniques, and enough context to make it possible for students with at least a basic knowledge of computability theory and proof theory to appreciate the exciting advances currently happening in the area, and perhaps make contributions of their own. It adopts a case-study approach, using the study of versions of Ramsey's Theorem (for colorings of tuples of natural numbers) and related principles as illustrations of various aspects of computability theoretic and reverse mathematical analysis. This book contains many exercises and open questions.
This volume takes its name from a popular series of intensive mathematics workshops hosted at institutions in Appalachia and surrounding areas. At these meetings, internationally prominent set theorists give one-day lectures that focus on important new directions, methods, tools and results so that non-experts can begin to master these and incorporate them into their own research. Each chapter in this volume was written by the workshop leaders in collaboration with select student participants, and together they represent most of the meetings from the period 2006–2012. Topics covered include forcing and large cardinals, descriptive set theory, and applications of set theoretic ideas in group theory and analysis, making this volume essential reading for a wide range of researchers and graduate students.
Numbers imitate space, which is of such a di?erent nature —Blaise Pascal It is fair to date the study of the foundation of mathematics back to the ancient Greeks. The urge to understand and systematize the mathematics of the time led Euclid to postulate axioms in an early attempt to put geometry on a ?rm footing. With roots in the Elements, the distinctive methodology of mathematics has become proof. Inevitably two questions arise: What are proofs? and What assumptions are proofs based on? The ?rst question, traditionally an internal question of the ?eld of logic, was also wrestled with in antiquity. Aristotle gave his famous syllogistic s- tems, and the Stoics had a nascent propositional ...
This volume is based on the talks given at the Workshop on Infinity and Truth held at the Institute for Mathematical Sciences, National University of Singapore, from 25 to 29 July 2011. The chapters cover topics in mathematical and philosophical logic that examine various aspects of the foundations of mathematics. The theme of the volume focuses on two basic foundational questions: (i) What is the nature of mathematical truth and how does one resolve questions that are formally unsolvable within the Zermelo-Fraenkel Set Theory with the Axiom of Choice, and (ii) Do the discoveries in mathematics provide evidence favoring one philosophical view over others? These issues are discussed from the vantage point of recent progress in foundational studies.The final chapter features questions proposed by the participants of the Workshop that will drive foundational research. The wide range of topics covered here will be of interest to students, researchers and mathematicians concerned with issues in the foundations of mathematics.
Over the years, this book has become a standard reference and guide in the set theory community. It provides a comprehensive account of the theory of large cardinals from its beginnings and some of the direct outgrowths leading to the frontiers of contemporary research, with open questions and speculations throughout.
Presents those methods of modern set theory most applicable to other areas of pure mathematics.