You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book contains original reviews by well-known workers in the field of mathematical linguistics and formal language theory, written in honour of Professor Solomon Marcus on the occasion of his 70th birthday.Some of the papers deal with contextual grammars, a class of generative devices introduced by Marcus, motivated by descriptive linguistics. Others are devoted to grammar systems, a very modern branch of formal language theory. Automata theory and the algebraic approach to computer science are other well-represented areas. While the contributions are mathematically oriented, practical issues such as cryptography, grammatical inference and natural language processing are also discussed.
This volume offers an important contribution to the comparative historical study of languages. Most of the articles deal with topics concerning the Indo-European proto-language as well as the individual languages descended from it. Essays in Finno-Ugric philology complete the volume. The book is divided in 8 sections: I. Indo-European, II. Anatolian, III. Indic, IV. Iranian and Armenian, V. Celtic, VI. Germanic Languages, VII. Slavic and Albanian, VIII. Fennougrica and Altaica.
This book offers, from both a theoretical and a computational perspective, an analysis of macroscopic mathematical models for description of charge transport in electronic devices, in particular in the presence of confining effects, such as in the double gate MOSFET. The models are derived from the semiclassical Boltzmann equation by means of the moment method and are closed by resorting to the maximum entropy principle. In the case of confinement, electrons are treated as waves in the confining direction by solving a one-dimensional Schrödinger equation obtaining subbands, while the longitudinal transport of subband electrons is described semiclassically. Limiting energy-transport and drif...
The 10th Quantum Mathematics International Conference (Qmath10) gave an opportunity to bring together specialists interested in that part of mathematical physics which is in close connection with various aspects of quantum theory. It was also meant to introduce young scientists and new tendencies in the field.This collection of carefully selected papers aims to reflect recent techniques and results on Schrdinger operators with magnetic fields, random Schrdinger operators, condensed matter and open systems, pseudo-differential operators and semiclassical analysis, quantum field theory and relativistic quantum mechanics, quantum information, and much more. The book serves as a concise and well-documented tool for the more experimented scientists, as well as a research guide for postgraduate students.
This volume brings about the contemporary results in the field of discrete-time systems. It covers papers written on the topics of robust control, nonlinear systems and recent applications. Although the technical views are different, they all geared towards focusing on the up-to-date knowledge gain by the researchers and providing effective developments along the systems and control arena. Each topic has a detailed discussions and suggestions for future perusal by interested investigators.
The Encyclopedia of Plant Physiology series has turned several times to the topic of photosynthesis. In the original series, two volumes edited by A. PIRSON and published in 1960 provided a broad overview of the entire field. Although the New Series has devoted three volumes to the same topic, the overall breadth of the coverage has had to be restricted to allow for greater in-depth treatment of three major areas of modern photosynthesis research: I. Photosynthetic Elec tron Transport and Photophosphorylation (Volume 5 edited by A. TREBST and M. AvRON, and published in 1977); II. Photosynthetic Carbon Metabolism and Related Processes (Volume 6 edited by M. GIBBS and E. LATZKO, and published ...
This text covers in detail recent developments in the field of stochastic processes and Random Matrix Theory. Matrix models have been playing an important role in theoretical physics for a long time and are currently also a very active domain of research in mathematics.