You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "[A]nyone who works with Markov processes whose state space is uncountably infinite will need this most impressive book as a guide and reference." -American Scientist "There is no question but that space should immediately be reserved for [this] book on the library shelf. Those who aspire to mastery of the contents should also re...
Introductory Statistics
Integrating interesting and widely used concepts of financial engineering into traditional statistics courses, Introduction to Probability and Statistics for Science, Engineering, and Finance illustrates the role and scope of statistics and probability in various fields. The text first introduces the basics needed to understand and create tables and graphs produced by standard statistical software packages, such as Minitab, SAS, and JMP. It then takes students through the traditional topics of a first course in statistics. Novel features include: Applications of standard statistical concepts and methods to the analysis and interpretation of financial data, such as risks and returns Cox–Ros...
This book chronicles Donald Burkholder's thirty-five year study of martingales and its consequences. Here are some of the highlights. Pioneering work by Burkholder and Donald Austin on the discrete time martingale square function led to Burkholder and Richard Gundy's proof of inequalities comparing the quadratic variations and maximal functions of continuous martingales, inequalities which are now indispensable tools for stochastic analysis. Part of their proof showed how novel distributional inequalities between the maximal function and quadratic variation lead to inequalities for certain integrals of functions of these operators. The argument used in their proof applies widely and is now c...
None
None