Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Basic Almost-Poised Hypergeometric Series
  • Language: en
  • Pages: 116

Basic Almost-Poised Hypergeometric Series

Presents a systematic treatment for the evaluation of basic almost poised series. Some 200 identities are covered, among which most are believed to be new. Their connections with the q-Clausen formulae as well as Rogers-Ramanujan identities are sketched. No index. Annotation copyrighted by Book News, Inc., Portland, OR

Combinatorics '90
  • Language: en
  • Pages: 577

Combinatorics '90

  • Type: Book
  • -
  • Published: 1992-08-17
  • -
  • Publisher: Elsevier

This volume forms a valuable source of information on recent developments in research in combinatorics, with special regard to the geometric point of view. Topics covered include: finite geometries (arcs, caps, special varieties in a Galois space; generalized quadrangles; Benz planes; foundation of geometry), partial geometries, Buekenhout geometries, transitive permutation sets, flat-transitive geometries, design theory, finite groups, near-rings and semifields, MV-algebras, coding theory, cryptography and graph theory in its geometric and design aspects.

An Introduction to q-analysis
  • Language: en
  • Pages: 519

An Introduction to q-analysis

Starting from simple generalizations of factorials and binomial coefficients, this book gives a friendly and accessible introduction to q q-analysis, a subject consisting primarily of identities between certain kinds of series and products. Many applications of these identities to combinatorics and number theory are developed in detail. There are numerous exercises to help students appreciate the beauty and power of the ideas, and the history of the subject is kept consistently in view. The book has few prerequisites beyond calculus. It is well suited to a capstone course, or for self-study in combinatorics or classical analysis. Ph.D. students and research mathematicians will also find it useful as a reference.

Advances in Combinatorics
  • Language: en
  • Pages: 308

Advances in Combinatorics

This volume, as Andrew M. Odlzyko writes in the foreword, “commemorates and celebrates the life and achievements of an extraordinary person.” Originally conceived as an 80th birthday tribute to Herbert Wilf, the well-known combinatorialist, the book has evolved beyond the proceeds of the W80 tribute. Professor Wilf was an award-winning teacher, who was supportive of women mathematicians, and who had an unusually high proportion of women among his PhD candidates. He was Editor-in-chief of the American Mathematical Monthly and a founder of both the Journal of Algorithms and of the Electronic Journal of Combinatorics. But he was first a researcher, driven by his desire to know and explain t...

Ramanujan's Lost Notebook
  • Language: en
  • Pages: 446

Ramanujan's Lost Notebook

​​​​In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge, to examine the papers of the late G.N. Watson. Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon designated, "Ramanujan's lost notebook." Its discovery has frequently been deemed the mathematical equivalent of finding Beethoven's tenth symphony. This volume is the fourth of five volumes that the authors plan to write on Ramanujan’s lost notebook.​ In contrast to the first three books on Ramanujan's Lost Notebook, the fourth book does not focus on q-series. Most of the entries exa...

Runs and Patterns in Probability: Selected Papers
  • Language: en
  • Pages: 364

Runs and Patterns in Probability: Selected Papers

The Probability Theory of Patterns and Runs has had a long and distinguished history, starting with the work of de Moivre in the 18th century and that of von Mises in the early 1920's, and continuing with the renewal-theoretic results in Feller's classic text An Introduction to Probability Theory and its Applications, Volume 1. It is worthwhile to note, in particular, that de Moivre, in the third edition of The Doctrine of Chances (1756, reprinted by Chelsea in 1967, pp. 254-259), provides the generating function for the waiting time for the appearance of k consecutive successes. During the 1940's, statisticians such as Mood, Wolfowitz, David and Mosteller studied the distribution theory, both exact and asymptotic, of run-related statistics, thereby laying the foundation for several exact run tests. In the last two decades or so, the theory has seen an impressive re-emergence, primarily due to important developments in Molecular Biology, but also due to related research thrusts in Reliability Theory, Distribution Theory, Combinatorics, and Statistics.

Theory and Applications of Special Functions
  • Language: en
  • Pages: 497

Theory and Applications of Special Functions

A collection of articles on various aspects of q-series and special functions dedicated to Mizan Rahman. It also includes an article by Askey, Ismail, and Koelink on Rahman’s mathematical contributions and how they influenced the recent upsurge in the subject.

Hiroshima Mathematical Journal
  • Language: en
  • Pages: 308

Hiroshima Mathematical Journal

  • Type: Book
  • -
  • Published: 2012
  • -
  • Publisher: Unknown

None

Analysis, Combinatorics and Computing
  • Language: en
  • Pages: 522

Analysis, Combinatorics and Computing

Analysis, Combinatorics & Computing

Difference Equations, Special Functions and Orthogonal Polynomials
  • Language: en
  • Pages: 789

Difference Equations, Special Functions and Orthogonal Polynomials

This volume contains talks given at a joint meeting of three communities working in the fields of difference equations, special functions and applications (ISDE, OPSFA, and SIDE). The articles reflect the diversity of the topics in the meeting but have difference equations as common thread. Articles cover topics in difference equations, discrete dynamical systems, special functions, orthogonal polynomials, symmetries, and integrable difference equations.