You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book discusses the computational approach in modern statistical physics in a clear and accessible way and demonstrates its close relation to other approaches in theoretical physics. Individual chapters focus on subjects as diverse as the hard sphere liquid, classical spin models, single quantum particles and Bose-Einstein condensation. Contained within the chapters are in-depth discussions of algorithms, ranging from basic enumeration methods to modern Monte Carlo techniques. The emphasis is on orientation, with discussion of implementation details kept to a minimum. Illustrations, tables and concise printed algorithms convey key information, making the material very accessible. The boo...
This book discusses the computational approach in modern statistical physics in a clear yet accessible way, and works out its intimate relations with other approaches in theoretical physics. Individual chapters focus on subjects as diverse as the hard sphere liquid, classical spin models, single quantum particles and Bose-Einstein condensation. They contain in-depth discussions of algorithms ranging from basic enumeration methods to modern Monte Carlo techniques. The emphasis is on orientation. Discussions of implementation details are kept to a minimum. The book heavily relies on illustrations, tables and concise printed algorithms to convey key information: all the material remains easily ...
This title gives students an integrated and rigorous picture of applied computer science, as it comes to play in the construction of a simple yet powerful computer system.
The book provides an introduction to the physics which underlies phase transitions and to the theoretical techniques currently at our disposal for understanding them. It will be useful for advanced undergraduates, for post-graduate students undertaking research in related fields, and for established researchers in experimental physics, chemistry, and metallurgy as an exposition of current theoretical understanding. - ;Recent developments have led to a good understanding of universality; why phase transitions in systems as diverse as magnets, fluids, liquid crystals, and superconductors can be brought under the same theoretical umbrella and well described by simple models. This book describes...
Providing a detailed and pedagogical account of the rapidly-growing field of computational statistical physics, this book covers both the theoretical foundations of equilibrium and non-equilibrium statistical physics, and also modern, computational applications such as percolation, random walks, magnetic systems, machine learning dynamics, and spreading processes on complex networks. A detailed discussion of molecular dynamics simulations is also included, a topic of great importance in biophysics and physical chemistry. The accessible and self-contained approach adopted by the authors makes this book suitable for teaching courses at graduate level, and numerous worked examples and end of chapter problems allow students to test their progress and understanding.
The field of highly frustrated magnetism has developed considerably and expanded over the last 15 years. Issuing from canonical geometric frustration of interactions, it now extends over other aspects with many degrees of freedom such as magneto-elastic couplings, orbital degrees of freedom, dilution effects, and electron doping. Its is thus shown here that the concept of frustration impacts on many other fields in physics than magnetism. This book represents a state-of-the-art review aimed at a broad audience with tutorial chapters and more topical ones, encompassing solid-state chemistry, experimental and theoretical physics.
An introduction to the techniques and algorithms of the newest field in robotics. Probabilistic robotics is a new and growing area in robotics, concerned with perception and control in the face of uncertainty. Building on the field of mathematical statistics, probabilistic robotics endows robots with a new level of robustness in real-world situations. This book introduces the reader to a wealth of techniques and algorithms in the field. All algorithms are based on a single overarching mathematical foundation. Each chapter provides example implementations in pseudo code, detailed mathematical derivations, discussions from a practitioner's perspective, and extensive lists of exercises and class projects. The book's Web site, www.probabilistic-robotics.org, has additional material. The book is relevant for anyone involved in robotic software development and scientific research. It will also be of interest to applied statisticians and engineers dealing with real-world sensor data.
The first textbook to provide a pedagogical examination of the major algorithms used in quantum Monte Carlo simulations.
From the inventor of the PalmPilot comes a new and compelling theory of intelligence, brain function, and the future of intelligent machines Jeff Hawkins, the man who created the PalmPilot, Treo smart phone, and other handheld devices, has reshaped our relationship to computers. Now he stands ready to revolutionize both neuroscience and computing in one stroke, with a new understanding of intelligence itself. Hawkins develops a powerful theory of how the human brain works, explaining why computers are not intelligent and how, based on this new theory, we can finally build intelligent machines. The brain is not a computer, but a memory system that stores experiences in a way that reflects the...