You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The calculus of finite differences is here treated thoroughly and clearly by one of the leading American experts in the field of numerical analysis and computation. The theory is carefully developed and applied to illustrative examples, and each chapter is followed by a set of helpful exercises. The book is especially designed for the use of actuarial students, statisticians, applied mathematicians, and any scientists forced to seek numerical solutions. It presupposes only a knowledge of algebra, analytic geometry, trigonometry, and elementary calculus. The object is definitely practical, for while numerical calculus is based on the concepts of pure mathematics, it is recognized that the wor...
Computer science rests upon the building blocks of numerical analysis. This concise treatment by an expert covers the essentials of the solution of finite systems of linear and nonlinear equations as well as the approximate representation of functions. A final section provides 54 problems, subdivided according to chapter. 1953 edition.
A much-needed guide on how to use numerical methods to solve practical engineering problems Bridging the gap between mathematics and engineering, Numerical Analysis with Applications in Mechanics and Engineering arms readers with powerful tools for solving real-world problems in mechanics, physics, and civil and mechanical engineering. Unlike most books on numerical analysis, this outstanding work links theory and application, explains the mathematics in simple engineering terms, and clearly demonstrates how to use numerical methods to obtain solutions and interpret results. Each chapter is devoted to a unique analytical methodology, including a detailed theoretical presentation and emphasis...
Predicting the future is a difficult task but, as with the weather, it is possible with good models. But how does one predict the far future before the near future is known? Time parallel time integration, also known as PinT (Parallel-in-Time) methods, aims to predict the near and far future simultaneously. In this self-contained book, the first on the topic, readers will find a comprehensive and up-to-date description of methods and techniques that have been developed to do just this. The authors describe the four main classes of PinT methods: shooting-type methods, waveform relaxation methods, time parallel multigrid methods, and direct time parallel methods. In addition, they provide historical background for each of the method classes, complete convergence analyses for the most representative variants of the methods in each class, and illustrations and runnable MATLAB code. An ideal introduction to this exciting and very active research field, Time Parallel Time Integration can be used for independent study or for a graduate course.
None