Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

XxAI - Beyond Explainable AI
  • Language: en
  • Pages: 397

XxAI - Beyond Explainable AI

This is an open access book. Statistical machine learning (ML) has triggered a renaissance of artificial intelligence (AI). While the most successful ML models, including Deep Neural Networks (DNN), have developed better predictivity, they have become increasingly complex, at the expense of human interpretability (correlation vs. causality). The field of explainable AI (xAI) has emerged with the goal of creating tools and models that are both predictive and interpretable and understandable for humans. Explainable AI is receiving huge interest in the machine learning and AI research communities, across academia, industry, and government, and there is now an excellent opportunity to push towar...

Machine learning in neuroscience
  • Language: en
  • Pages: 361

Machine learning in neuroscience

None

Medical Image Computing and Computer Assisted Intervention – MICCAI 2020
  • Language: en
  • Pages: 842

Medical Image Computing and Computer Assisted Intervention – MICCAI 2020

The seven-volume set LNCS 12261, 12262, 12263, 12264, 12265, 12266, and 12267 constitutes the refereed proceedings of the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, held in Lima, Peru, in October 2020. The conference was held virtually due to the COVID-19 pandemic. The 542 revised full papers presented were carefully reviewed and selected from 1809 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: machine learning methodologies Part II: image reconstruction; prediction and diagnosis; cross-domain methods and reconstruction; domain adaptation; machine learning applica...

Mathematical Aspects of Deep Learning
  • Language: en
  • Pages: 494

Mathematical Aspects of Deep Learning

In recent years the development of new classification and regression algorithms based on deep learning has led to a revolution in the fields of artificial intelligence, machine learning, and data analysis. The development of a theoretical foundation to guarantee the success of these algorithms constitutes one of the most active and exciting research topics in applied mathematics. This book presents the current mathematical understanding of deep learning methods from the point of view of the leading experts in the field. It serves both as a starting point for researchers and graduate students in computer science, mathematics, and statistics trying to get into the field and as an invaluable reference for future research.

Artificial Neural Networks and Machine Learning - ICANN 2011
  • Language: en
  • Pages: 409

Artificial Neural Networks and Machine Learning - ICANN 2011

  • Type: Book
  • -
  • Published: 2011-06-13
  • -
  • Publisher: Springer

This two volume set LNCS 6791 and LNCS 6792 constitutes the refereed proceedings of the 21th International Conference on Artificial Neural Networks, ICANN 2011, held in Espoo, Finland, in June 2011. The 106 revised full or poster papers presented were carefully reviewed and selected from numerous submissions. ICANN 2011 had two basic tracks: brain-inspired computing and machine learning research, with strong cross-disciplinary interactions and applications.

Explainable Artificial Intelligence for Intelligent Transportation Systems
  • Language: en
  • Pages: 286

Explainable Artificial Intelligence for Intelligent Transportation Systems

  • Type: Book
  • -
  • Published: 2023-10-20
  • -
  • Publisher: CRC Press

Artificial Intelligence (AI) and Machine Learning (ML) are set to revolutionize all industries, and the Intelligent Transportation Systems (ITS) field is no exception. While ML, especially deep learning models, achieve great performance in terms of accuracy, the outcomes provided are not amenable to human scrutiny and can hardly be explained. This can be very problematic, especially for systems of a safety-critical nature such as transportation systems. Explainable AI (XAI) methods have been proposed to tackle this issue by producing human interpretable representations of machine learning models while maintaining performance. These methods hold the potential to increase public acceptance and trust in AI-based ITS. FEATURES: Provides the necessary background for newcomers to the field (both academics and interested practitioners) Presents a timely snapshot of explainable and interpretable models in ITS applications Discusses ethical, societal, and legal implications of adopting XAI in the context of ITS Identifies future research directions and open problems

Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data
  • Language: en
  • Pages: 138

Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data

This book constitutes the refereed joint proceedings of the 4th International Workshop on Interpretability of Machine Intelligence in Medical Image Computing, iMIMIC 2020, and the First International Workshop on Topological Data Analysis and Its Applications for Medical Data, TDA4MedicalData 2021, held on September 27, 2021, in conjunction with the 24th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2021. The 7 full papers presented at iMIMIC 2021 and 5 full papers held at TDA4MedicalData 2021 were carefully reviewed and selected from 12 submissions each. The iMIMIC papers focus on introducing the challenges and opportunities related to the topic of interpretability of machine learning systems in the context of medical imaging and computer assisted intervention. TDA4MedicalData is focusing on using TDA techniques to enhance the performance, generalizability, efficiency, and explainability of the current methods applied to medical data.

Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning
  • Language: en
  • Pages: 224

Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning

This book constitutes the refereed proceedings of the Second MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2020, and the First MICCAI Workshop on Distributed and Collaborative Learning, DCL 2020, held in conjunction with MICCAI 2020 in October 2020. The conference was planned to take place in Lima, Peru, but changed to an online format due to the Coronavirus pandemic. For DART 2020, 12 full papers were accepted from 18 submissions. They deal with methodological advancements and ideas that can improve the applicability of machine learning (ML)/deep learning (DL) approaches to clinical settings by making them robust and consistent across different domains. For DCL 2020...

Federated Learning for Future Intelligent Wireless Networks
  • Language: en
  • Pages: 324

Federated Learning for Future Intelligent Wireless Networks

Federated Learning for Future Intelligent Wireless Networks Explore the concepts, algorithms, and applications underlying federated learning In Federated Learning for Future Intelligent Wireless Networks, a team of distinguished researchers deliver a robust and insightful collection of resources covering the foundational concepts and algorithms powering federated learning, as well as explanations of how they can be used in wireless communication systems. The editors have included works that examine how communication resource provision affects federated learning performance, accuracy, convergence, scalability, and security and privacy. Readers will explore a wide range of topics that show how...

Signal Processing and Machine Learning Theory
  • Language: en
  • Pages: 1236

Signal Processing and Machine Learning Theory

  • Type: Book
  • -
  • Published: 2023-07-10
  • -
  • Publisher: Elsevier

Signal Processing and Machine Learning Theory, authored by world-leading experts, reviews the principles, methods and techniques of essential and advanced signal processing theory. These theories and tools are the driving engines of many current and emerging research topics and technologies, such as machine learning, autonomous vehicles, the internet of things, future wireless communications, medical imaging, etc. - Provides quick tutorial reviews of important and emerging topics of research in signal processing-based tools - Presents core principles in signal processing theory and shows their applications - Discusses some emerging signal processing tools applied in machine learning methods - References content on core principles, technologies, algorithms and applications - Includes references to journal articles and other literature on which to build further, more specific, and detailed knowledge