You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
"In 1970, at the U. of Colorado, the author delivered a course of lectures on his famous generalization, then just established, relating to Roth's theorem on rational approxi- mations to algebraic numbers. The present volume is an ex- panded and up-dated version of the original mimeographed notes on the course. As an introduction to the author's own remarkable achievements relating to the Thue-Siegel-Roth theory, the text can hardly be bettered and the tract can already be regarded as a classic in its field."(Bull.LMS) "Schmidt's work on approximations by algebraic numbers belongs to the deepest and most satisfactory parts of number theory. These notes give the best accessible way to learn the subject. ... this book is highly recommended." (Mededelingen van het Wiskundig Genootschap)
"This book by a leading researcher and masterly expositor of the subject studies diophantine approximations to algebraic numbers and their applications to diophantine equations. The methods are classical, and the results stressed can be obtained without much background in algebraic geometry. In particular, Thue equations, norm form equations and S-unit equations, with emphasis on recent explicit bounds on the number of solutions, are included. The book will be useful for graduate students and researchers." (L'Enseignement Mathematique) "The rich Bibliography includes more than hundred references. The book is easy to read, it may be a useful piece of reading not only for experts but for students as well." Acta Scientiarum Mathematicarum
"Addresses contemporary developments in number theory and coding theory, originally presented as lectures at summer school held at Bilkent University, Ankara, Turkey. Includes many results in book form for the first time."
These ten lectures were presented by Guido Weiss at the University of Nebraska during the week of May 31 to June 4, 1976. They were a part of the Regional Conference Program sponsored by the Conference Board of the Mathematical Sciences and funded by the National Science Foundation. The topic chosen, ``the transference method'', involves a very simple idea that can be applied to several different branches of analysis. The authors have chosen familiar special cases in order to illustrate the use of transference: much that involves general locally compact abelian groups can be understood by examining the real line; the group of rotations can be used to explain what can be done with compact gro...
This book provides an exposition of function field arithmetic with emphasis on recent developments concerning Drinfeld modules, the arithmetic of special values of transcendental functions (such as zeta and gamma functions and their interpolations), diophantine approximation and related interesting open problems. While it covers many topics treated in 'Basic Structures of Function Field Arithmetic' by David Goss, it complements that book with the inclusion of recent developments as well as the treatment of new topics such as diophantine approximation, hypergeometric functions, modular forms, transcendence, automata and solitons. There is also new work on multizeta values and log-algebraicity. The author has included numerous worked-out examples. Many open problems, which can serve as good thesis problems, are discussed.
Includes entries for maps and atlases.
This book collects some surveys on current trends in discrete mathematics and discrete geometry. The areas covered include: graph representations, structural graphs theory, extremal graph theory, Ramsey theory and constrained satisfaction problems.
Second edition sold 2241 copies in N.A. and 1600 ROW. New edition contains 50 percent new material.