You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains the proceedings of the conference on Lie Algebras, Vertex Operator Algebras, and Related Topics, celebrating the 70th birthday of James Lepowsky and Robert Wilson, held from August 14–18, 2015, at the University of Notre Dame, Notre Dame, Indiana. Since their seminal work in the 1970s, Lepowsky and Wilson, their collaborators, their students, and those inspired by their work, have developed an amazing body of work intertwining the fields of Lie algebras, vertex algebras, number theory, theoretical physics, quantum groups, the representation theory of finite simple groups, and more. The papers presented here include recent results and descriptions of ongoing research initiatives representing the broad influence and deep connections brought about by the work of Lepowsky and Wilson and include a contribution by Yi-Zhi Huang summarizing some major open problems in these areas, in particular as they pertain to two-dimensional conformal field theory.
The authors investigate the global continuity on spaces with of Fourier integral operators with smooth and rough amplitudes and/or phase functions subject to certain necessary non-degeneracy conditions. In this context they prove the optimal global boundedness result for Fourier integral operators with non-degenerate phase functions and the most general smooth Hörmander class amplitudes i.e. those in with . They also prove the very first results concerning the continuity of smooth and rough Fourier integral operators on weighted spaces, with and (i.e. the Muckenhoupt weights) for operators with rough and smooth amplitudes and phase functions satisfying a suitable rank condition.
This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.
The authors study the perturbation of a shock wave in conservation laws with physical viscosity. They obtain the detailed pointwise estimates of the solutions. In particular, they show that the solution converges to a translated shock profile. The strength of the perturbation and that of the shock are assumed to be small but independent. The authors' assumptions on the viscosity matrix are general so that their results apply to the Navier-Stokes equations for the compressible fluid and the full system of magnetohydrodynamics, including the cases of multiple eigenvalues in the transversal fields, as long as the shock is classical. The authors' analysis depends on accurate construction of an approximate Green's function. The form of the ansatz for the perturbation is carefully constructed and is sufficiently tight so that the author can close the nonlinear term through Duhamel's principle.
The authors study the Cauchy problem for the one-dimensional wave equation ∂2tu(t,x)−∂2xu(t,x)+V(x)u(t,x)=0. The potential V is assumed to be smooth with asymptotic behavior V(x)∼−14|x|−2 as |x|→∞. They derive dispersive estimates, energy estimates, and estimates involving the scaling vector field t∂t+x∂x, where the latter are obtained by employing a vector field method on the “distorted” Fourier side. In addition, they prove local energy decay estimates. Their results have immediate applications in the context of geometric evolution problems. The theory developed in this paper is fundamental for the proof of the co-dimension 1 stability of the catenoid under the vanishing mean curvature flow in Minkowski space; see Donninger, Krieger, Szeftel, and Wong, “Codimension one stability of the catenoid under the vanishing mean curvature flow in Minkowski space”, preprint arXiv:1310.5606 (2013).
The author studies a family of renormalization transformations of generalized diamond hierarchical Potts models through complex dynamical systems. He proves that the Julia set (unstable set) of a renormalization transformation, when it is treated as a complex dynamical system, is the set of complex singularities of the free energy in statistical mechanics. He gives a sufficient and necessary condition for the Julia sets to be disconnected. Furthermore, he proves that all Fatou components (components of the stable sets) of this family of renormalization transformations are Jordan domains with at most one exception which is completely invariant. In view of the problem in physics about the distribution of these complex singularities, the author proves here a new type of distribution: the set of these complex singularities in the real temperature domain could contain an interval. Finally, the author studies the boundary behavior of the first derivative and second derivative of the free energy on the Fatou component containing the infinity. He also gives an explicit value of the second order critical exponent of the free energy for almost every boundary point.
This book focuses on developments in complex dynamical systems and geometric function theory over the past decade, showing strong links with other areas of mathematics and the natural sciences. Traditional methods and approaches surface in physics and in the life and engineering sciences with increasing frequency – the Schramm‐Loewner evolution, Laplacian growth, and quadratic differentials are just a few typical examples. This book provides a representative overview of these processes and collects open problems in the various areas, while at the same time showing where and how each particular topic evolves. This volume is dedicated to the memory of Alexander Vasiliev.
The author develops a homology theory for Smale spaces, which include the basics sets for an Axiom A diffeomorphism. It is based on two ingredients. The first is an improved version of Bowen's result that every such system is the image of a shift of finite type under a finite-to-one factor map. The second is Krieger's dimension group invariant for shifts of finite type. He proves a Lefschetz formula which relates the number of periodic points of the system for a given period to trace data from the action of the dynamics on the homology groups. The existence of such a theory was proposed by Bowen in the 1970s.
Motivated by the maximal subgroup problem of the finite classical groups the authors begin the classification of imprimitive irreducible modules of finite quasisimple groups over algebraically closed fields K. A module of a group G over K is imprimitive, if it is induced from a module of a proper subgroup of G. The authors obtain their strongest results when char(K)=0, although much of their analysis carries over into positive characteristic. If G is a finite quasisimple group of Lie type, they prove that an imprimitive irreducible KG-module is Harish-Chandra induced. This being true for \rm char(K) different from the defining characteristic of G, the authors specialize to the case char(K)=0...