You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
This twelfth volume of Collected Papers includes 86 papers comprising 976 pages on Neutrosophics Theory and Applications, published between 2013-2021 in the international journal and book series “Neutrosophic Sets and Systems” by the author alone or in collaboration with the following 112 co-authors (alphabetically ordered) from 21 countries: Abdel Nasser H. Zaied, Muhammad Akram, Bobin Albert, S. A. Alblowi, S. Anitha, Guennoun Asmae, Assia Bakali, Ayman M. Manie, Abdul Sami Awan, Azeddine Elhassouny, Erick González-Caballero, D. Dafik, Mithun Datta, Arindam Dey, Mamouni Dhar, Christopher Dyer, Nur Ain Ebas, Mohamed Eisa, Ahmed K. Essa, Faruk Karaaslan, João Alcione Sganderla Figueire...
This book addresses new concepts, methods, algorithms, modeling, and applications of green supply chain, inventory control problems, assignment problems, transportation problem, linear problems and new information related to optimization for the topic from the theoretical and applied viewpoints of neutrosophic sets and logic. The book is an innovatory of new tools and procedures, such as: Neutrosophic Statistical Tests and Dependent State Samplings, Neutrosophic Probabilistic Expert Systems, Neutrosophic HyperSoft Set, Quadripartitioned Neutrosophic Cross-Entropy, Octagonal and Spherical and Cubic Neutrosophic Numbers used in machine learning. It highlights the process of neutrosofication {which means to split the universe into three parts, two opposite ones (Truth and Falsehood), and an Indeterminate or neutral one (I) in between them}. It explains Three-Ways Decision, how the universe set is split into three different distinct areas, in regard to the decision process, representing: Acceptance, Noncommitment, and Rejection, respectively. The Three-Way Decision is used in the Neutrosophic Linguistic Rough Set, which has never been done before.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
Neutrosophic Sets and Systems (NSS) is an academic journal, published quarterly online and on paper, that has been created for publications of advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics etc. and their applications in any field.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles in this issue: n-Refined Neutrosophic Modules, A Neutrosophic Approach to Digital Images, A Novel Method for Neutrosophic Assignment Problem by using Interval-Valued Trapezoidal Neutrosophic Number.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation
Florentin Smarandache generalize the soft set to the hypersoft set by transforming the function 𝐹 into a multi-argument function. This extension reveals that the hypersoft set with neutrosophic, intuitionistic, and fuzzy set theory will be very helpful to construct a connection between alternatives and attributes. Also, the hypersoft set will reduce the complexity of the case study. The Book “Theory and Application of Hypersoft Set” focuses on theories, methods, algorithms for decision making and also applications involving neutrosophic, intuitionistic, and fuzzy information. Our goal is to develop a strong relationship with the MCDM solving techniques and to reduce the complexion in the methodologies. It is interesting that the hypersoft theory can be applied on any decision-making problem without the limitations of the selection of the values by the decision-makers. Some topics having applications in the area: Multi-criteria decision making (MCDM), Multi-criteria group decision making (MCGDM), shortest path selection, employee selection, e-learning, graph theory, medical diagnosis, probability theory, topology, and some more.
This book is a collection of 12 innovative research papers in the field of hypercompositional algebra, 7 of them being more theoretically oriented, with the other 5 presenting strong applicative aspects in engineering, control theory, artificial intelligence, and graph theory. Hypercompositional algebra is now a well-established branch of abstract algebra dealing with structures endowed with multi-valued operations, also called hyperoperations, having a set as the result of the interrelation between two elements of the support set. The theoretical papers in this book are principally related to three main topics: (semi)hypergroups, hyperfields, and BCK-algebra. Heidari and Cristea present a n...
This volume contains the Proceedings of the 13th International Conference on p-adic Functional Analysis, held from August 12–16, 2014, at the University of Paderborn, Paderborn, Germany. The articles included in this book feature recent developments in various areas of non-Archimedean analysis, non-Archimedean functional analysis, representation theory, number theory, non-Archimedean dynamical systems and applications. Through a combination of new research articles and survey papers, this book provides the reader with an overview of current developments and techniques in non-Archimedean analysis as well as a broad knowledge of some of the sub-areas of this exciting and fast-developing research area.