You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume gathers the contributions from outstanding mathematicians, such as Samuel Krushkal, Reiner Khnau, Chung Chun Yang, Vladimir Miklyukov and others.It will help researchers to solve problems on complex analysis and potential theory and discuss various applications in engineering. The contributions also update the reader on recent developments in the field. Moreover, a special part of the volume is completely devoted to the formulation of some important open problems and interesting conjectures.
None
None
Emil Grosswald was a mathematician of great accomplishment and remarkable breadth of vision. This volume pays tribute to the span of his mathematical interests, which is reflected in the wide range of papers collected here. With contributions by leading contemporary researchers in number theory, modular functions, combinatorics, and related analysis, this book will interest graduate students and specialists in these fields. The high quality of the articles and their close connection to current research trends make this volume a must for any mathematics library.
This volume gathers the contributions from outstanding mathematicians, such as Samuel Krushkal, Reiner Kühnau, Chung Chun Yang, Vladimir Miklyukov and others.It will help researchers to solve problems on complex analysis and potential theory and discuss various applications in engineering. The contributions also update the reader on recent developments in the field. Moreover, a special part of the volume is completely devoted to the formulation of some important open problems and interesting conjectures.
This book is an attempt to cover some of the salient features of classical, one variable complex function theory. The approach is analytic, as opposed to geometric, but the methods of all three of the principal schools (those of Cauchy, Riemann and Weierstrass) are developed and exploited. The book goes deeply into several topics (e.g. convergence theory and plane topology), more than is customary in introductory texts, and extensive chapter notes give the sources of the results, trace lines of subsequent development, make connections with other topics, and offer suggestions for further reading. These are keyed to a bibliography of over 1,300 books and papers, for each of which volume and pa...
Like real analysis, complex analysis has generated methods indispensable to mathematics and its applications. Exploring the interactions between these two branches, this book uses the results of real analysis to lay the foundations of complex analysis and presents a unified structure of mathematical analysis as a whole. To set the groundwork and mitigate the difficulties newcomers often experience, An Introduction to Complex Analysis begins with a complete review of concepts and methods from real analysis, such as metric spaces and the Green-Gauss Integral Formula. The approach leads to brief, clear proofs of basic statements - a distinct advantage for those mainly interested in applications...
The only full-scale history of Syngman Rhee’s (1875–1965) early career in English was published nearly six decades ago. Now, in The Making of the First Korean President, Young Ick Lew uncovers little-known aspects of Rhee’s leadership roles prior to 1948, when he became the Republic of Korea’s first president. In this richly illustrated volume, Lew delves into Rhee’s background, investigates his abortive diplomatic missions, and explains how and why he was impeached as the head of the Korean Provisional Government in 1925. He analyzes the numerous personal conflicts between Rhee and other prominent Korean leaders, including some close friends and supporters who eventually denounced...
None
The history of mathematics is, to a considerable extent, connected with the study of solutions of the equation f(x)=a=const for functions f(x) of one real or complex variable. Therefore, it is surprising that we know very little about solutions of u(x,y)=A=const for functions of two real variables. These two solutions, called level of sets, are very important with regard to applications in physics, biology and economics as they make a map of appropriate processes described by the function u(x,y) for given parameters (x,y). This text explores a concept, Gamma-lines, which generalizes the concept of levels of sets and, at the same time, the concept of a-points. The authors provide a book on Gamma-lines for the broad specialist and show the large range of their field of applications. The general methods proposed in this volume are useful for both physicists and engineers.