You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Some scales of spaces of ultra-differentiable functions are introduced, having good stability properties with respect to infinitely many derivatives and compositions. They are well-suited for solving non-linear functional equations by means of hard implicit function theorems. They comprise Gevrey functions and thus, as a limiting case, analytic functions. Using majorizing series, we manage to characterize them in terms of a real sequence M bounding the growth of derivatives. In this functional setting, we prove two fundamental results of Hamiltonian perturbation theory: the invariant torus theorem, where the invariant torus remains ultra-differentiable under the assumption that its frequency...
View the abstract.
View the abstract.
View the abstract.
View the abstract.
View the abstract.
We define and study cohomological tensor functors from the category Tn of finite-dimensional representations of the supergroup Gl(n|n) into Tn−r for 0 < r ≤ n. In the case DS : Tn → Tn−1 we prove a formula DS(L) = ΠniLi for the image of an arbitrary irreducible representation. In particular DS(L) is semisimple and multiplicity free. We derive a few applications of this theorem such as the degeneration of certain spectral sequences and a formula for the modified superdimension of an irreducible representation.