You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is intended to be a textbook for students of water resources engineering and management. It is an introduction to methods used in hydrosystems for upper level undergraduate and graduate students. The material can be presented to students with no background in operations research and with only an undergraduate background in hydrology and hydraulics. A major focus is to bring together the use of economics, operations research, probability and statistics with the use of hydrology, hydraulics, and water resources for the analysis, design, operation, and management of various types of water projects. This book is an excellent reference for engineers, water resource planners, water resou...
Failure of hydrosystems, such as dams, levees, storm sewers, or pollution control systems, pose threats to the public safety and health as well as potentially inflict enormous damages on properties and environments. Many failures of hydrosystems are mainly attributed by the existence of various uncertainties, including inherent natural randomness and the lack of complete understanding of involved geophysical processes. It is therefore essential to systematically quantify the degree of uncertainty for the problem in hand so that reliability assessment and risk-based design of hydrosystems can be made. The conventional approach of frequency analysis of heavy rainfalls or large floods consider only portion of the uncertainties involved in hydrosystem engineering problems. Over the past two decades or so, there has been a steady growth on the development and application of uncertainty analysis techniques in hydrosystems engineering and other disciplines. The aim of this book is to bring together these uncertainty analysis techniques in one book and to demonstrate their applications and limitations for a wide variety of hydrosystem engineering problems.
This is the first book to integrate reliability analysis and risk assessment with the planning, design, and management of hydrosystems (dams, levees, storm sewers, etc.). Requiring only a basic knowledge of probability and statistics, readers will be able to determine how hydrosystem structures will perform under various circumstances.
"Combines the hydraulic simulation of physical processes with mathematical programming and differential dynamic programming techniques to ensure the optimization of hydrosystems. Presents the principles and methodologies for systems and optimal control concepts; features differential dynamic programming in developing models and solution algorithms for groundwater, real-time flood and sediment control of river-reservoir systems, and water distribution systems operations, as well as bay and estuary freshwater inflow reservoir oprations; and more."
Hydrological extremes have become a major concern because of their devastating consequences and their increased risk as a result of climate change and the growing concentration of people and infrastructure in high-risk zones. The analysis of hydrological extremes is challenging due to their rarity and small sample size, and the interconnections between different types of extremes and becomes further complicated by the untrustworthy representation of meso-scale processes involved in extreme events by coarse spatial and temporal scale models as well as biased or missing observations due to technical difficulties during extreme conditions. The complexity of analyzing hydrological extremes calls...
"Advances in Water Resources and Hydraulic Engineering - Proceedings of 16th IAHR-APD Congress and 3rd Symposium of IAHR-ISHS" discusses some serious problems of sustainable development of human society related to water resources, disaster caused by flooding or draught, environment and ecology, and introduces latest research in river engineering and fluvial processes, estuarine and coastal hydraulics, hydraulic structures and hydropower hydraulics, etc. The proceedings covers new research achievements in the Asian-Pacific region in water resources, environmental ecology, river and coastal engineering, which are especially important for developing countries all over the world. This proceedings serves as a reference for researchers in the field of water resources, water quality, water pollution and water ecology. Changkuan Zhang and Hongwu Tang both are professors at Hohai University, China.
This book presents a wide range of recent advances in hydraulics and water engineering. It contains four sections: hydraulics and open channel flow; hydrology, water resources management and hydroinformatics; maritime hydraulics; ecohydraulics and water quality management. World authorities such as Mike Abbot, I Nezu, A J Metha, M Garcia and P Y Julien have contributed to the book.