You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Surveys the research dating back to the 1970s which forms the basis of applying this technique in modern communication systems. It provides an overview of how information theoretic approaches are developed to achieve secrecy for a basic wire-tap channel model and for its extensions to multiuser networks.
Understand key information-theoretic principles that underpin the design of next-generation cellular systems with this invaluable resource. This book is the perfect tool for researchers and graduate students in the field of information theory and wireless communications, as well as for practitioners in the telecommunications industry.
Within the healthcare domain, big data is defined as any ``high volume, high diversity biological, clinical, environmental, and lifestyle information collected from single individuals to large cohorts, in relation to their health and wellness status, at one or several time points.'' Such data is crucial because within it lies vast amounts of invaluable information that could potentially change a patient's life, opening doors to alternate therapies, drugs, and diagnostic tools. Signal Processing and Machine Learning for Biomedical Big Data thus discusses modalities; the numerous ways in which this data is captured via sensors; and various sample rates and dimensionalities. Capturing, analyzin...
Physical Layer Security in Wireless Communications supplies a systematic overview of the basic concepts, recent advancements, and open issues in providing communication security at the physical layer. It introduces the key concepts, design issues, and solutions to physical layer security in single-user and multi-user communication systems, as well as large-scale wireless networks. Presenting high-level discussions along with specific examples, and illustrations, this is an ideal reference for anyone that needs to obtain a macro-level understanding of physical layer security and its role in future wireless communication systems.
The chapters in this volume highlight the state-of-the-art of compressed sensing and are based on talks given at the third international MATHEON conference on the same topic, held from December 4-8, 2017 at the Technical University in Berlin. In addition to methods in compressed sensing, chapters provide insights into cutting edge applications of deep learning in data science, highlighting the overlapping ideas and methods that connect the fields of compressed sensing and deep learning. Specific topics covered include: Quantized compressed sensing Classification Machine learning Oracle inequalities Non-convex optimization Image reconstruction Statistical learning theory This volume will be a valuable resource for graduate students and researchers in the areas of mathematics, computer science, and engineering, as well as other applied scientists exploring potential applications of compressed sensing.
This book focuses specifically on physical layer security, a burgeoning topic in security. It consists of contributions from the leading research groups in this emerging area, and for the first time important high-impact results are collected together.
Learn how information theoretic approaches can inform the design of more secure information systems and networks with this expert guide. Covering theoretical models, analytical results, and the state of the art in research, it will be of interest to researchers, graduate students, and practitioners working in communications engineering.
Adopting a balanced mix of theory, algorithms and practical design issues, this comprehensive volume explores cutting-edge applications in adaptive wireless communications and the implications these techniques have for future wireless network performance. Presenting practical concerns in the context of different strands from information theory, parameter estimation theory, array processing and wireless communication, the authors present a complete picture of the field. Topics covered include advanced multiple-antenna adaptive processing, ad hoc networking, MIMO, MAC protocols, space-time coding, cellular networks and cognitive radio, with the significance and effects of both internal and external interference a recurrent theme throughout. A broad, self-contained technical introduction to all the necessary mathematics, statistics, estimation theory and information theory is included, and topics are accompanied by a range of engaging end-of-chapter problems. With solutions available online, this is the perfect self-study resource for students of advanced wireless systems and wireless industry professionals.
Peterson's Graduate Programs in Engineering & Applied Sciences, Aerospace/Aeronautical Engineering, Agricultural Engineering & Bioengineering, and Architectural Engineering contains a wealth of information on colleges and universities that offer graduate work these exciting fields. The institutions listed include those in the United States and Canada, as well as international institutions that are accredited by U.S. accrediting bodies. Up-to-date information, collected through Peterson's Annual Survey of Graduate and Professional Institutions, provides valuable information on degree offerings, professional accreditation, jointly offered degrees, part-time and evening/weekend programs, postba...