You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
On the liquid 's surface, the molecules have fewer neighbors in comparison with the bulk volume. As a result, the energy interaction shows itself in the surface tension. Traditionally, the surface tension can be assumed as a force in the unit of the length which can be counted by the unit of Newton on squared meter, or energy on the units of the surface. The surface tension, implies the interface between liquid and vapor, which is an example of the surface tensions. The equilibrium between these surface tensions, decides that a droplet on a solid surface, would have a droplet form or will change to layer form. This book collects new developments in wetting and wettability science.
Nanotechnology has experienced a rapid growth in the past decade, largely owing to the rapid advances in nanofabrication techniques employed to fabricate nano-devices. Nanofabrication can be divided into two categories: "bottom up" approach using chemical synthesis or self assembly, and "top down" approach using nanolithography, thin film deposition and etching techniques. Both topics are covered, though with a focus on the second category. This book contains twenty nine chapters and aims to provide the fundamentals and recent advances of nanofabrication techniques, as well as its device applications. Most chapters focus on in-depth studies of a particular research field, and are thus targeted for researchers, though some chapters focus on the basics of lithographic techniques accessible for upper year undergraduate students. Divided into five parts, this book covers electron beam, focused ion beam, nanoimprint, deep and extreme UV, X-ray, scanning probe, interference, two-photon, and nanosphere lithography.
Engineering systems have played a crucial role in stimulating many of the modern developments in nonlinear and stochastic dynamics. After 20 years of rapid progress in these areas, this book provides an overview of the current state of nonlinear modeling and analysis for mechanical and structural systems. This volume is a coherent compendium written by leading experts from the United States, Canada, Western and Eastern Europe, and Australia. The 22 articles describe the background, recent developments, applications, and future directions in bifurcation theory, chaos, perturbation methods, stochastic stability, stochastic flows, random vibrations, reliability, disordered systems, earthquake engineering, and numerics. The book gives readers a sophisticated toolbox that will allow them to tackle modeling problems in mechanical systems that use stochastic and nonlinear dynamics ideas. An extensive bibliography and index ensure this volume will remain a reference standard for years to come.
None
"This volume ... consists of a book with full texts of invited talks and attached CD-ROM with Extended Summaries of 1225 papers presented during the Congress"--p. x.
Vibration of Periodic Structures introduces the fundamentals of periodic structure theory by considering the simplest model – wave propagation in an infinitely long periodic spring-mass system. It then shows how the knowledge of the stop and pass bands can be utilized to find the natural frequency distribution in a finite periodic structure. The basic concepts are further extended to wave propagation in infinitely long periodically supported beams and plates; distribution of natural frequencies of a similar structure of finite length; vibration of skin-stringer structures; and structuralacoustic properties of a section of an aircraft fuselage, based on a combination of the finite element m...
A practical approach to the application of viscoelastic damping materials to control vibration and noise problems in industrial structures, machinery, computer machinery, and vehicles. Assuming a basic understanding of mechanical engineering, the text covers implementation of theory, including material properties, dynamic structural response, design procedures and practical applications. Based on an understanding of both the properties of materials and the vibrational response of structures. Considers individual structures and the damping materials properties simultaneously. Includes extensive collection of data sheets for a large number of useful damping materials.
The engineering community generally accepts that there exists only a small set of closed-form solutions for simple cases of bars, beams, columns, and plates. Despite the advances in powerful computing and advanced numerical techniques, closed-form solutions remain important for engineering; these include uses for preliminary design, for evaluation