You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book contains some selected papers from the International Conference on Extreme Learning Machine 2016, which was held in Singapore, December 13-15, 2016. This conference will provide a forum for academics, researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning. Extreme Learning Machines (ELM) aims to break the barriers between the conventional artificial learning techniques and biological learning mechanism. ELM represents a suite of (machine or possibly biological) learning techniques in which hidden neurons need not be tuned. ELM learning theories show that very effective learning al...
This book constitutes the refereed proceedings of the IFIP TC 5, TC 12, WG 8.4, 8.9, 12.9 International Cross-Domain Conference for Machine Learning and Knowledge Extraction, CD-MAKE 2019, held in Canterbury, UK, in August 2019. The 25 revised full papers presented were carefully reviewed and selected from 45 submissions. The cross-domain integration and appraisal of different fields provides an atmosphere to foster different perspectives and opinions; it will offer a platform for novel ideas and a fresh look on the methodologies to put these ideas into business for the benefit of humanity.
This book contains some selected papers from the International Conference on Extreme Learning Machine (ELM) 2017, held in Yantai, China, October 4–7, 2017. The book covers theories, algorithms and applications of ELM. Extreme Learning Machines (ELM) aims to enable pervasive learning and pervasive intelligence. As advocated by ELM theories, it is exciting to see the convergence of machine learning and biological learning from the long-term point of view. ELM may be one of the fundamental `learning particles’ filling the gaps between machine learning and biological learning (of which activation functions are even unknown). ELM represents a suite of (machine and biological) learning techniq...
This book contains some selected papers from the International Conference on Extreme Learning Machine 2019, which was held in Yangzhou, China, December 14–16, 2019. Extreme Learning Machines (ELMs) aim to enable pervasive learning and pervasive intelligence. As advocated by ELM theories, it is exciting to see the convergence of machine learning and biological learning from the long-term point of view. ELM may be one of the fundamental ‘learning particles’ filling the gaps between machine learning and biological learning (of which activation functions are even unknown). ELM represents a suite of (machine and biological) learning techniques in which hidden neurons need not be tuned: inhe...
This book contains some selected papers from the International Conference on Extreme Learning Machine 2018, which was held in Singapore, November 21–23, 2018. This conference provided a forum for academics, researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning. Extreme Learning Machines (ELM) aims to enable pervasive learning and pervasive intelligence. As advocated by ELM theories, it is exciting to see the convergence of machine learning and biological learning from the long-term point of view. ELM may be one of the fundamental “learning particles” filling the gaps between machine ...
This two-volume set LNCS 7902 and 7903 constitutes the refereed proceedings of the 12th International Work-Conference on Artificial Neural Networks, IWANN 2013, held in Puerto de la Cruz, Tenerife, Spain, in June 2013. The 116 revised papers were carefully reviewed and selected from numerous submissions for presentation in two volumes. The papers explore sections on mathematical and theoretical methods in computational intelligence, neurocomputational formulations, learning and adaptation emulation of cognitive functions, bio-inspired systems and neuro-engineering, advanced topics in computational intelligence and applications.
This edited book includes extended and revised versions of a set of selected papers from the First International Conference on Pattern Recognition (ICPRAM 2012), held in Vilamoura, Algarve, Portugal, from 6 to 8 February, 2012, sponsored by the Institute for Systems and Technologies of Information Control and Communication (INSTICC) and held in cooperation with the Association for the Advancement of Artificial Intelligence (AAAI) and Pattern Analysis, Statistical Modelling and Computational Learning (PASCAL2). The conference brought together researchers, engineers and practitioners interested on the areas of Pattern Recognition, both from theoretical and application perspectives.
This two volume set LNCS 5163 and LNCS 5164 constitutes the refereed proceedings of the 18th International Conference on Artificial Neural Networks, ICANN 2008, held in Prague Czech Republic, in September 2008. The 200 revised full papers presented were carefully reviewed and selected from more than 300 submissions. The second volume is devoted to pattern recognition and data analysis, hardware and embedded systems, computational neuroscience, connectionistic cognitive science, neuroinformatics and neural dynamics. it also contains papers from two special sessions coupling, synchronies, and firing patterns: from cognition to disease, and constructive neural networks and two workshops new trends in self-organization and optimization of artificial neural networks, and adaptive mechanisms of the perception-action cycle.
This book constitutes the proceedings of the 11th International Conference on Network and System Security, NSS 2017, held in Helsinki, Finland, in August 2017. The 24 revised full papers presented in this book were carefully reviewed and selected from 83 initial submissions. The papers are organized in topical sections on Cloud and IoT Security; Network Security; Platform and Hardware Security; Crypto and Others; and Authentication and Key Management. This volume also contains 35 contributions of the following workshops: Security Measurements of Cyber Networks (SMCN-2017); Security in Big Data (SECBD-2017); 5G Security and Machine Learning (IW5GS-2017); of the Internet of Everything (SECIOE-2017).
This book constitutes the refereed proceedings of the 7th International Workshop on Advances in Self-Organizing Maps, WSOM 2009, held in St. Augustine, Florida, in June 2009. The 41 revised full papers presented were carefully reviewed and selected from numerous submissions. The papers deal with topics in the use of SOM in many areas of social sciences, economics, computational biology, engineering, time series analysis, data visualization and theoretical computer science.