You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Man-made carcinogens, natural genotoxic agents in the environment, as well as ionizing and ultraviolet radiation can damage DNA and are a constant threat to genome integrity. Throughout the evolution oflife, complex DNA repair systems have developed in all living organisms to cope with this damage. Unrepaired DNA lesions can promote genetic alterations (mutations) that may be linked to an altered phenotype, and, if growth-controlling genes are involved, these mutations can lead to cell transformation and the development of malignant tumors. Proto oncogenes and tumor suppressor genes may be critical targets for DNA damaging agents. In a number of animal model systems, correlations between exp...
Focusing on what has been one of the driving forces behind the development of lab-on-a-chip devices, Separation Methods in Microanalytical Systems explores the implementation, realization, and operation of separation techniques and related complex workflows on microfabricated devices. The book details the design, manufacture, and integration of diverse components needed to perform an entire analytical procedure on a single miniaturized device. This volume is valuable reference for scientists and engineers anticipating the demand for function-specific chemical separation systems in biomedical diagnostics, environmental monitoring, and drug discovery applications.
Stands as the most comprehensive guide to the subject-covering every essential topic related to DNA damage identification and repair. Covering a wide array of topics from bacteria to human cells, this book summarizes recent developments in DNA damage repair and recognition while providing timely reviews on the molecular mechanisms employe
None
This book is based on the invited and contributed papers presented at the 2nd International Conference on Anticarcinogenesis and Radiation Protection held at the National Bureau of Standards, Gaithersburg, Maryland, USA, on March 8-12, 1987. The conference documented developments that have taken place in areas that were addressed during the first conference in 1982. A number of new topics, such as biological response modifiers, were included because of their emerging relevance to anticarcinogenesis and radiation protection. The organization of the material in this book does not follow the conference program; rather, we have attempted to provide a different sequence for didactic reasons. The ...
Congress Proceedings
''Useful and timely.'' ---Mutagenesis ''Of considerable value.'' ---Journal of Medical Genetics ''Quite readable....a comprehensive overview....perfectly covers the needs of those researchers who have to decide on the best strategy to identify damage or mutations at the molecular level.'' ---Trends in Cell Biology ''The formats of the presentations are uniform and ample and up-to-date references are provided at the end of each chapter...will be welcomed by postgraduate researchers of all ages and should retain its usefulness for a long time.'' ---Endeavour, 21(4), 1997 This important resource thoroughly reviews a wide range of techniques used in mutagenesis research-ranging from established techniques to recently developed methodologies-based on the polymerase chain reaction. DNA damage analysis, DNA repair assays, and mutation detection are a few of the techniques featured. Chapters present detailed experimental protocols benefiting researchers and students in the fields of toxicology, biotechniques, molecular biology, photobiology, medical genetics, and oncology.
The focus of this collection of papers is upon the perturbations which damage introduces into DNA molecules, and how these structural changes influence the recognition and interactions of biologically important proteins with damaged DNA.
There is a paucity of information on the dynamics of Ascorbic Acid (AA) turnover in relation to germination, metabolism, growth, differentiation and development of a plant and in those undergoing stress of various types. in presowing treatment of seeds etc. The turnover of AA plays an important role during the juvenile phase of growth of a plant and has a significant bearing on its subsequent growth, development and maturation. The beneficial effect of presowing treatment of seed with Ascorbic Acid (AA) + H2 O highlights the validity of the AA-nucleic acid 2 protein metabolism concept of growth and development of plan ts. During the course of the last 30 years, work has been undertaken by the author and his collaborators on the meta bolic drifts of regulatory substances during juvenile, vegetative, reproductive and senescent phases. The most important of these growth regulatory substances was found to be Ascorbic Acid. The dynamiC role of AA turnover is revealed by its control of rates of metabolic processes as well as those of enzymic reactions which paves the way to "New Genetics".