You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book contains recent results about the global dynamics defined by a class of delay differential equations which model basic feedback mechanisms and arise in a variety of applications such as neural networks. The authors describe in detail the geometric structure of a fundamental invariant set, which in special cases is the global attractor, and the asymptotic behavior of solution curves on it. The approach makes use of advanced tools which in recent years have been developed for the investigation of infinite-dimensional dynamical systems: local invariant manifolds and inclination lemmas for noninvertible maps, Floquet theory for delay differential equations, a priori estimates controlli...
We prove that the kernel of the action of the modular group on the center of a semisimple factorizable Hopf algebra is a congruence subgroup whenever this action is linear. If the action is only projective, we show that the projective kernel is a congruence subgroup. To do this, we introduce a class of generalized Frobenius-Schur indicators and endow it with an action of the modular group that is compatible with the original one.
We study the higher Frobenius-Schur indicators of modules over semisimple Hopf algebras, and relate them to other invariants as the exponent, the order, and the index. We prove various divisibility and integrality results for these invariants. In particular, we prove a version of Cauchy's theorem for semisimple Hopf algebras. Furthermore, we give some examples that illustrate the general theory.
A note on Brauer-Schur functions / Kazuya Aokage, Hiroshi Mizukawa and Hiro-Fumi Yamada -- [symbol]-operators on associative algebras, associative Yang-Baxter equations and dendriform algebras / Chengming Bai, Li Guo and Xiang Ni -- Irreducible Wakimoto-like modules for the affine Lie algebra [symbol] / Yun Gao and Ziting Zeng -- Verma modules over generic exp-polynomial Lie algebras / Xiangqian Guo, Xuewen Liu and Kaiming Zhao -- A formal infinite dimensional Cauchy problem and its relation to integrable hierarchies / G.F. Helminck, E.A. Panasenko and A.O. Sergeeva -- Partially harmonic tensors and quantized Schur-Weyl duality / Jun Hu and Zhankui Xiao -- Quantum entanglement and approximation by positive matrices / Xiaofen Huang and Naihuan Jing -- 2-partitions of root systems / Bin Li, William Wong and Hechun Zhang -- A survey on weak Hopf algebras / Fang Li and Qinxiu Sun -- The equitable presentation for the quantum algebra Uq(f(k)) / Yan Pan, Meiling Zhu and Libin Li
Vertex operator algebras are a class of algebras underlying a number of recent constructions, results, and themes in mathematics. These algebras can be understood as ''string-theoretic analogues'' of Lie algebras and of commutative associative algebras. They play fundamental roles in some of the most active research areas in mathematics and physics. Much recent progress in both physics and mathematics has benefited from cross-pollination between the physical and mathematical points of view. This book presents the proceedings from the workshop, ''Vertex Operator Algebras in Mathematics and Physics'', held at The Fields Institute. It consists of papers based on many of the talks given at the conference by leading experts in the algebraic, geometric, and physical aspects of vertex operator algebra theory. The book is suitable for graduate students and research mathematicians interested in the major themes and important developments on the frontier of research in vertex operator algebra theory and its applications in mathematics and physics.
This book presents a systematic study on the structures of vertex operator superalgebras and their modules. Related theories of self-dual codes and lattices are included, as well as recent achievements on classifications of certain simple vertex operator superalgebras and their irreducible twisted modules, constructions of simple vertex operator superalgebras from graded associative algebras and their anti-involutions, self-dual codes and lattices. Audience: This book is of interest to researchers and graduate students in mathematics and mathematical physics.
In this paper the authors investigate homological and homotopical aspects of a concept of torsion which is general enough to cover torsion and cotorsion pairs in abelian categories, $t$-structures and recollements in triangulated categories, and torsion pairs in stable categories. The proper conceptual framework for this study is the general setting of pretriangulated categories, an omnipresent class of additive categories which includes abelian, triangulated, stable, and moregenerally (homotopy categories of) closed model categories in the sense of Quillen, as special cases. The main focus of their study is on the investigation of the strong connections and the interplay between (co)torsion...
This volume presents the proceedings from the Colloquium on Quantum Groups and Hopf Algebras held in Cordoba (Argentina) in 1999. The meeting brought together researchers who discussed recent developments in Hopf algebras, one of the most important being the influence of quantum groups. Articles offer introductory expositions and surveys on topics of current interest that, to date, have not been available in the current literature. Surveys are included on characteristics of Hopf algebras and their generalizations, biFrobenius algebras, braided Hopf algebras, inner actions and Galois theory, face algebras, and infinitesimal Hopf algebras. The following topics are also covered: existence of integrals, classification of semisimple and pointed Hopf algebras, *-Hopf algebras, dendriform algebras, etc. Non-classical topics are also included, reflecting its applications both inside and outside the theory.
Let $X$ be a smooth elliptic fibration over a smooth base $B$. Under mild assumptions, the authors establish a Fourier-Mukai equivalence between the derived categories of two objects, each of which is an $\mathcal{O} DEGREES{\times}$ gerbe over a genus one fibration which is a twisted form
The author studies Hardy spaces on C1 and Lipschitz domains in Riemannian manifolds. Hardy spaces, originally introduced in 1920 in complex analysis setting, are invaluable tool in harmonic analysis. For this reason these spaces have been studied extensively by many authors.