You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book proposes analysis and design techniques for Markov jump systems (MJSs) using Lyapunov function and sliding mode control techniques. It covers a range of topics including stochastic stability, finite-time boundedness, actuator-fault problem, bumpless transfer scheme, and adaptive sliding mode fault-tolerant control for uncertain MJSs. Notably, the book presents a new model for deception attacks (DAs), establishing the correlation between attacks and time delays, which should be of particular interest due to the recent increase in such attacks. The book's content is presented in a comprehensive, progressive manner, with fundamental principles introduced first before addressing more advanced techniques. The book features illustrations and tables, providing readers with a practical and intuitive approach to applying these methods in their own research. This book will prove invaluable to researchers and graduate students in control engineering and applied mathematics with an interest in the latest developments in MJSs.
This book offers its readers a detailed overview of the synthesis of switched systems, with a focus on switching stabilization and intelligent control. The problems investigated are not only previously unsolved theoretically but also of practical importance in many applications: voltage conversion, naval piloting and navigation and robotics, for example. The book considers general switched-system models and provides more efficient design methods to bring together theory and application more closely than was possible using classical methods. It also discusses several different classes of switched systems. For general switched linear systems and switched nonlinear systems comprising unstable s...
The three volume set LNCS 4232, LNCS 4233, and LNCS 4234 constitutes the refereed proceedings of the 13th International Conference on Neural Information Processing, ICONIP 2006, held in Hong Kong, China in October 2006. The 386 revised full papers presented were carefully reviewed and selected from 1175 submissions.
The three volume set LNCS 4232, LNCS 4233, and LNCS 4234 constitutes the refereed proceedings of the 13th International Conference on Neural Information Processing, ICONIP 2006, held in Hong Kong, China in October 2006. The 386 revised full papers presented were carefully reviewed and selected from 1175 submissions.
The book focuses on analysis and design for positive stochastic jump systems. By using multiple linear co-positive Lyapunov function method and linear programming technique, a basic theoretical framework is formed toward the issues of analysis and design for positive stochastic jump systems. This is achieved by providing an in-depth study on several major topics such as stability, time delay, finite-time control, observer design, filter design, and fault detection for positive stochastic jump systems. The comprehensive and systematic treatment of positive systems is one of the major features of the book, which is particularly suited for readers who are interested to learn non-negative theory. By reading this book, the reader can obtain the most advanced analysis and design techniques for positive stochastic jump systems.
This volume of Advances in Soft Computing and Lecture Notes in Computer th Science vols. 5551, 5552 and 5553, constitute the Proceedings of the 6 Inter- tional Symposium of Neural Networks (ISNN 2009) held in Wuhan, China during May 26–29, 2009. ISNN is a prestigious annual symposium on neural networks with past events held in Dalian (2004), Chongqing (2005), Chengdu (2006), N- jing (2007) and Beijing (2008). Over the past few years, ISNN has matured into a well-established series of international conference on neural networks and their applications to other fields. Following this tradition, ISNN 2009 provided an a- demic forum for the participants to disseminate their new research finding...
Annotation The three volume set LNCS 4491/4492/4493 constitutes the refereed proceedings of the 4th International Symposium on Neural Networks, ISNN 2007, held in Nanjing, China in June 2007. The 262 revised long papers and 192 revised short papers presented were carefully reviewed and selected from a total of 1.975 submissions. The papers are organized in topical sections on neural fuzzy control, neural networks for control applications, adaptive dynamic programming and reinforcement learning, neural networks for nonlinear systems modeling, robotics, stability analysis of neural networks, learning and approximation, data mining and feature extraction, chaos and synchronization, neural fuzzy systems, training and learning algorithms for neural networks, neural network structures, neural networks for pattern recognition, SOMs, ICA/PCA, biomedical applications, feedforward neural networks, recurrent neural networks, neural networks for optimization, support vector machines, fault diagnosis/detection, communications and signal processing, image/video processing, and applications of neural networks.
This book is the first of a two-volume set that constitutes the refereed proceedings of the 17th International Conference on Artificial Neural Networks, ICANN 2007, held in Porto, Portugal, September 2007. Coverage includes advances in neural network learning methods, advances in neural network architectures, neural dynamics and complex systems, data analysis, evolutionary computing, agents learning, as well as temporal synchronization and nonlinear dynamics in neural networks.