You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This lecture discusses the use of graph models to represent reconfigurable antennas. The rise of antennas that adapt to their environment and change their operation based on the user's request hasn't been met with clear design guidelines. There is a need to propose some rules for the optimization of any reconfigurable antenna design and performance. Since reconfigurable antennas are seen as a collection of self-organizing parts, graph models can be introduced to relate each possible topology to a corresponding electromagnetic performance in terms of achieving a characteristic frequency of operation, impedance, and polarization. These models help designers understand reconfigurable antenna st...
This one-of-a-kind new resource presents cognitive radio from an antenna design perspective and introduces the concept of cognitive radio as a protocol that benefits from under-utilized regions of the spectrum. This book covers topics that govern the operation of a cognitive radio and discusses the use of reconfigurable antennas, reconfigurable filtennas, and MIMO antennas for cognitive radio. The analysis and design of different antenna systems are presented, compared and evaluated. New approaches to improve spectrum efficiency are explored by demonstrating how to design software controlled cognitive radio antenna systems. This new resource shows how to communicate using either interweave o...
This book covers the medical condition of diabetic patients, their early symptoms and methods conventionally used for diagnosing and monitoring diabetes. It describes various techniques and technologies used for diabetes detection. The content is built upon moving from regressive technology (invasive) and adapting new-age pain-free technologies (non-invasive), machine learning and artificial intelligence for diabetes monitoring and management. This book details all the popular technologies used in the health care and medical fields for diabetic patients. An entire chapter is dedicated to how the future of this field will be shaping up and the challenges remaining to be conquered. Finally, it shows artificial intelligence and predictions, which can be beneficial for the early detection, dose monitoring and surveillance for patients suffering from diabetes
Over the Air Measurement for Wireless Communication Systems is a complete and cutting-edge guide to the performance evaluation of wireless systems, such as 5th Generation wireless communications (5G) and beyond, Internet of Things (IoT), Intelligent Connected Vehicle (ICV), wireless sensors, and smart world wireless terminals. The book covers critical specifications for wireless communication systems, including Total Radiated Power (TRP) and Total Isotropic Sensitivity (TIS). Readers are provided with the most recent advancements in applications like massive Multiple-Input Multiple-Output (MIMO) and Intelligent Connected Vehicle Over the Air Measurements (OTA), as well as in-depth knowledge ...
This comprehensive resource presents antenna fundamentals balanced with the design of printed antennas. Over 70 antenna projects, along with design dimensions, design flows and antenna performance results are discussed, including antennas for wireless communication, 5G antennas and beamforming. Examples of smartphone antennas, MIMO antennas, aerospace and satellite remote sensing array antennas, automotive antennas and radar systems and many more printed antennas for various applications are also included. These projects include design dimensions and parameters that incorporate the various techniques used by industries and academia. This book is intended to serve as a practical microstrip and printed antenna design guide to cover various real-world applications. All Antenna projects discussed in this book are designed, analyzed and simulated using full-wave electromagnetic solvers. Based on several years of the author’s research in antenna design and development for RF and microwave applications, this book offers an in-depth coverage of practical printed antenna design methodology for modern applications.
The demand for integration of smart devices into our daily lives has led to a pressing challenge – the effective design and optimization of antennas for wearable and implantable applications. As our reliance on interconnected devices grows, so does the need for antennas that transcend their conventional roles and adapt to the diverse, dynamic needs of users. Addressing these challenges is vital, considering the unique demands imposed by this technology, ranging from size constraints to energy efficiency, biocompatibility, and signal integrity. Design and Optimization of Wearable, Implantable, and Edible Antennas, is an innovative work that confronts these challenges head-on. In this exploration, the book sheds light on the evolving landscape where electromagnetic research intersects with the demands of human life. As antennas seamlessly weave into attire, revolutionize healthcare through implants, and even find their place in edibles, this book serves as a guide for academic scholars, researchers, engineers, and students navigating the intricate terrain of antenna engineering.
This updated edition of an Artech House classic contains steering, focusing, and spreading of antenna beams using the physics of refraction of electromagnetic waves through a plasma. Pulsing circuitry for ionizing plasma antennas with low power requirements are covered. New and improved smart plasma antenna and applications to wi-fi and the applications of plasma antennas are discussed. Experimental work on plasma antenna noise and new progress on ruggedization and custom-made plasma tubes are also presented. This unique resource provides readers with a solid understanding of the efficient design and prototype development of plasma antennas to meet the challenge of reducing the power required to ionize the gas at various plasma densities. Thorough coverage of the technical underpinnings of plasma antennas, as well as important discussions on current markets and applications are discussed. Additionally, the book presents experimental work in this cutting-edge area and reveals the latest developments in the field.
This ground-breaking resource gives you the background theories and know-how you need to effectively design active phased array antennas with wider bandwidth and scan volume utilizing sparse array technology. The book shows you how to incorporate aperiodic arrays and sparse arrays as a solution for overcoming the restrictions faced in conventional phased antenna designs – such as blind spots, limited scan volume, large power and cooling requirements, RF path losses, and increased complexity – while adhering to the maintenance of SWAP-C resources widely used in aerospace and defence. Packed with step-by-step information and research results unavailable in any other single source to date, ...
In recent years, transmitarray antennas have attracted growing interest with many antenna researchers. Transmitarrays combines both optical and antenna array theory, leading to a low profile design with high gain, high radiation efficiency, and versatile radiation performance for many wireless communication systems. In this book, comprehensive analysis, new methodologies, and novel designs of transmitarray antennas are presented. Detailed analysis for the design of planar space-fed array antennas is presented. The basics of aperture field distribution and the analysis of the array elements are described. The radiation performances (directivity and gain) are discussed using array theory appro...
Tunable Materials with Applications in Antennas and Microwaves is a stimulating topic in these modern times. With the explosion of the new generation of the wireless world, greater emphasis than ever before is being placed on the analysis and applications of modern materials. This book describes the characteristics of Ferrites and Ferroelectrics and introduces the reader to Multiferroics. Represents, in a simple manner, the solid state physics and explains the permittivity and permeability tensor characteristics for the tunable materials of infinite and finite dimensions. Gives the applications of tunable materials in resonators, filters, microstrips, striplines, antennas, phase shifters, ca...