You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The authors define axiomatically a large class of function (or distribution) spaces on $N$-dimensional Euclidean space. The crucial property postulated is the validity of a vector-valued maximal inequality of Fefferman-Stein type. The scales of Besov spaces ($B$-spaces) and Lizorkin-Triebel spaces ($F$-spaces), and as a consequence also Sobolev spaces, and Bessel potential spaces, are included as special cases. The main results of Chapter 1 characterize our spaces by means of local approximations, higher differences, and atomic representations. In Chapters 2 and 3 these results are applied to prove pointwise differentiability outside exceptional sets of zero capacity, an approximation property known as spectral synthesis, a generalization of Whitney's ideal theorem, and approximation theorems of Luzin (Lusin) type.
This paper sets up a language to deal with Dirac operators on manifolds with corners of arbitrary codimension. In particular the author develops a precise theory of boundary reductions. The author introduces the notion of a taming of a Dirac operator as an invertible perturbation by a smoothing operator. Given a Dirac operator on a manifold with boundary faces the author uses the tamings of its boundary reductions in order to turn the operator into a Fredholm operator. Its index is an obstruction against extending the taming from the boundary to the interior. In this way he develops an inductive procedure to associate Fredholm operators to Dirac operators on manifolds with corners and develops the associated obstruction theory.
This is a collection of contributed papers which focus on recent results in areas of differential equations, function spaces, operator theory and interpolation theory. In particular, it covers current work on measures of non-compactness and real interpolation, sharp Hardy-Littlewood-Sobolev inequalites, the HELP inequality, error estimates and spectral theory of elliptic operators, pseudo differential operators with discontinuous symbols, variable exponent spaces and entropy numbers. These papers contribute to areas of analysis which have been and continue to be heavily influenced by the leading British analysts David Edmunds and Des Evans. This book marks their respective 80th and 70th birthdays.
This book contains a proof that a dominant morphism from a 3-fold $X$ to a variety $Y$ can be made toroidal by blowing up in the target and domain. We give applications to factorization of birational morphisms of 3-folds.
Given a symmetric random walk in ${\mathbb Z}^2$ with finite second moments, let $R_n$ be the range of the random walk up to time $n$. The authors study moderate deviations for $R_n -{\mathbb E}R_n$ and ${\mathbb E}R_n -R_n$. They also derive the corresponding laws of the iterated logarithm.
The authors study the Newton map $N:\mathbb{C}^2\rightarrow\mathbb{C}^2$ associated to two equations in two unknowns, as a dynamical system. They focus on the first non-trivial case: two simultaneous quadratics, to intersect two conics. In the first two chapters, the authors prove among other things: The Russakovksi-Shiffman measure does not change the points of indeterminancy. The lines joining pairs of roots are invariant, and the Julia set of the restriction of $N$ to such a line has under appropriate circumstances an invariant manifold, which shares features of a stable manifold and a center manifold. The main part of the article concerns the behavior of $N$ at infinity. To compactify $\...
In this article the author describes in detail a compactification of the moduli schemes representing Drinfeld modules of rank 2 endowed with some level structure. The boundary is a union of copies of moduli schemes for Drinfeld modules of rank 1, and its points are interpreted as Tate data. The author also studies infinitesimal deformations of Drinfeld modules with level structure.
This work begins with the presentation of generalizations of the classical Herglotz Representation Theorem for holomorphic functions with positive real part on the unit disc to functions with positive real part defined on multiply-connected domains. The generalized Herglotz kernels that appear in these representation theorems are then exploited to evolve new conditions for spectral set and rational dilation conditions over multiply-connected domains. These conditions form the basis for the theoretical development of a computational procedure for probing a well-known unsolved problem in operator theory, the so called rational dilation conjecture. Arbitrary precision algorithms for computing the Herglotz kernels on circled domains are presented and analyzed. These algorithms permit an effective implementation of the computational procedure which results in a machine generated counterexample to the rational dilation conjecture.
The authors determine all hyperbolic $3$-manifolds $M$ admitting two toroidal Dehn fillings at distance $4$ or $5$. They show that if $M$ is a hyperbolic $3$-manifold with a torus boundary component $T 0$, and $r,s$ are two slopes on $T 0$ with $\Delta(r,s) = 4$ or $5$ such that $M(r)$ and $M(s)$ both contain an essential torus, then $M$ is either one of $14$ specific manifolds $M i$, or obtained from $M 1, M 2, M 3$ or $M {14}$ by attaching a solid torus to $\partial M i - T 0$.All the manifolds $M i$ are hyperbolic, and the authors show that only the first three can be embedded into $S3$. As a consequence, this leads to a complete classification of all hyperbolic knots in $S3$ admitting two toroidal surgeries with distance at least $4$.
The author gives a systematic study of the Hardy spaces of functions with values in the noncommutative $Lp$-spaces associated with a semifinite von Neumann algebra $\mathcal{M .$ This is motivated by matrix valued Harmonic Analysis (operator weighted norm inequalities, operator Hilbert transform), as well as by the recent development of noncommutative martingale inequalities. in this paper noncommutative Hardy spaces are defined by noncommutative Lusin integral function, and it isproved that they are equivalent to those defined by noncommutative Littlewood-Paley G-functions. The main results of this paper include: (i) The analogue in the author's setting of the classical Fefferman duality theorem between $\mathcal{H 1$ and $\mathrm{BMO $. (ii) The atomic decomposition of theauthor's noncommutative $\mathcal{H 1.$ (iii) The equivalence between the norms of the noncommutative Hardy spaces and of the noncommutative $Lp$-spaces $(1