You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume reports results from the German research initiative MUNA (Management and Minimization of Errors and Uncertainties in Numerical Aerodynamics), which combined development activities of the German Aerospace Center (DLR), German universities and German aircraft industry. The main objective of this five year project was the development of methods and procedures aiming at reducing various types of uncertainties that are typical of numerical flow simulations. The activities were focused on methods for grid manipulation, techniques for increasing the simulation accuracy, sensors for turbulence modelling, methods for handling uncertainties of the geometry and grid deformation as well as stochastic methods for quantifying aleatoric uncertainties.
Contains 20 papers presented at the Sixth International Nobeyama Workshop on the New Century of Computational Fluid Dynamics, Nobeyama, Japan, April 21-24, 2003. These papers cover computational electromagnetics, astrophysical topics, CFD research and applications in general, large-eddy simulation, mesh generation topics, visualization, and more.
This volume contains results of the German CFD initiative MEGADESIGN which combines CFD development activities from DLR, universities and aircraft industry. Based on the DLR flow solvers FLOWer and TAU the main objectives of the four-years project is to ensure the prediction accuracy with a guaranteed error bandwidth for certain aircraft configurations at design conditions, to reduce the simulation turn-around time for large-scale applications significantly, to improve the reliability of the flow solvers for full aircraft configurations in the complete flight regime, to extend the flow solvers to allow for multidisciplinary simulations and to establish numerical shape optimization as a vital tool within the aircraft design process. This volume highlights recent improvements and enhancements of the flow solvers as well as new developments with respect to aerodynamic and multidisciplinary shape optimization. Improved numerical simulation capabilities are demonstrated by several industrial applications.
In January 2012 an Oberwolfach workshop took place on the topic of recent developments in the numerics of partial differential equations. Focus was laid on methods of high order and on applications in Computational Fluid Dynamics. The book covers most of the talks presented at this workshop.
This book reports on the latest numerical and experimental findings in the field of high-lift technologies. It covers interdisciplinary research subjects relating to scientific computing, aerodynamics, aeroacoustics, material sciences, aircraft structures, and flight mechanics. The respective chapters are based on papers presented at the Final Symposium of the Collaborative Research Center (CRC) 880, which was held on December 17-18, 2019 in Braunschweig, Germany. The conference and the research presented here were partly supported by the CRC 880 on “Fundamentals of High Lift for Future Civil Aircraft,” funded by the DFG (German Research Foundation). The papers offer timely insights into high-lift technologies for short take-off and landing aircraft, with a special focus on aeroacoustics, efficient high-lift, flight dynamics, and aircraft design.
This book offers timely insights into research on numerical and experimental fluid mechanics and aerodynamics, mainly for (but not limited to) aerospace applications. It reports on findings by members of the STAB (German Aerospace Aerodynamics Association) and DGLR (German Society for Aeronautics and Astronautics) and covers both nationally and EC-funded projects. Continuing on the tradition of the previous volumes, the book highlights innovative solutions, promoting translation from fundamental research to industrial applications. It addresses academics and professionals in the field of aeronautics, astronautics, ground transportation, and energy alike.
This book presents a snapshot of the state-of-art in the field of turbulence modeling, with an emphasis on numerical methods. Topics include direct numerical simulations, large eddy simulations, compressible turbulence, coherent structures, two-phase flow simulation and many more. It includes both theoretical contributions and experimental works, as well as chapters derived from keynote lectures, presented at the fifth Turbulence and Interactions Conference (TI 2018), which was held on June 25-29 in Martinique, France. This multifaceted collection, which reflects the conference ́s emphasis on the interplay of theory, experiments and computing in the process of understanding and predicting the physics of complex flows and solving related engineering problems, offers a timely guide for students, researchers and professionals in the field of applied computational fluid dynamics, turbulence modeling and related areas.
This book offers detailed insights into new methods for high-fidelity CFD, and their industrially relevant applications in aeronautics. It reports on the H2020 TILDA project, funded by the European Union in 2015-2018. The respective chapters demonstrate the potential of high-order methods for enabling more accurate predictions of non-linear, unsteady flows, ensuring enhanced reliability in CFD predictions. The book highlights industrially relevant findings and representative test cases on the development of high-order methods for unsteady turbulence simulations on unstructured grids; on the development of the LES/DNS methodology by means of multilevel, adaptive, fractal and similar approache...
This book reports on the latest knowledge concerning critical phenomena arising in fluid-structure interaction due to movement and/or deformation of bodies. The focus of the book is on reporting progress in understanding turbulence and flow control to improve aerodynamic / hydrodynamic performance by reducing drag, increasing lift or thrust and reducing noise under critical conditions that may result in massive separation, strong vortex dynamics, amplification of harmful instabilities (flutter, buffet), and flow -induced vibrations. Theory together with large-scale simulations and experiments have revealed new features of turbulent flow in the boundary layer over bodies and in thin shear lay...
This book reports on advanced strategies to design, modeling and testing morphing wings for aeronautical applications. Covering the major outcomes of the multidisciplinary project “Smart Morphing & Sensing” (H2020 N° 723402 SMS), funded by the European Union between 2017 and 2020, it presents a complete set of theories and methods that have been used and developed to integrate novel electroactive actuators and sensors in wings, for the purpose of increasing their aerodynamic efficiency and attenuate vibrations and noise. Topics include: integrated aeroelastic design of morphing wings using high-fidelity computational fluid dynamics and structural mechanics, distributed sensing using a new generation of high-fidelity fiber optics sensors, and controller design by appropriate flight control commands. Further, the book reports on advanced experimental techniques to validate novel actuation and sensing systems on the built prototypes via wind tunnel tests at subsonic (take-off and landing) and transonic (cruise) speeds. All in all, this volume provides readers with extensive and timely information on research and developments of bioinspired aircraft wings.