You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
In qualitative theory of differential equations, an important role is played by special classes of solutions, like periodic solutions or solutions to some boundary value problems. When a system of ordinary differential equations has equilibria, i.e. constant solutions, whose stability properties are known, it is significant to search for connections between them by trajectories of solutions of the given system. These are called homoclinic or heteroclinic, according to whether they describe a loop based at one single equilibrium or they "start" and "end" at two distinct equilibria. This thesis is devoted to the study of heteroclinic solutions for a specific class of ordinary differential equa...
This book is about toric topology, a new area of mathematics that emerged at the end of the 1990s on the border of equivariant topology, algebraic and symplectic geometry, combinatorics, and commutative algebra. It has quickly grown into a very active area with many links to other areas of mathematics, and continues to attract experts from different fields. The key players in toric topology are moment-angle manifolds, a class of manifolds with torus actions defined in combinatorial terms. Construction of moment-angle manifolds relates to combinatorial geometry and algebraic geometry of toric varieties via the notion of a quasitoric manifold. Discovery of remarkable geometric structures on mo...
Surrealists appeared in the aftermath of World War I with a bang: revolution of thought, creativity, and the wish to break away from the past and all that was left in ruins.This refusal to integrate into the bourgeois society was also a leitmotiv of Dada artists, and André Breton asserted that Dada does not produce perspective. Surrealism emerged amidst such feeling. Surrealists and Dada artists often changed from one movement to another.They were united by their superior intellectualism and the common goal to break free from the norm. Describing the Surrealists with their aversive resistance to the system, the author brings a new approach which strives to be relative and truthful. Provocation and cultural revolution: aren’t Surrealists after all just a direct product of creative individualism in this unsettled period?
Starting at an introductory level, the book leads rapidly to important and often new results in synthetic differential geometry. From rudimentary analysis the book moves to such important results as: a new proof of De Rham's theorem; the synthetic view of global action, going as far as the Weil characteristic homomorphism; the systematic account of structured Lie objects, such as Riemannian, symplectic, or Poisson Lie objects; the view of global Lie algebras as Lie algebras of a Lie group in the synthetic sense; and lastly the synthetic construction of symplectic structure on the cotangent bundle in general. Thus while the book is limited to a naive point of view developing synthetic differential geometry as a theory in itself, the author nevertheless treats somewhat advanced topics, which are classic in classical differential geometry but new in the synthetic context. Audience: The book is suitable as an introduction to synthetic differential geometry for students as well as more qualified mathematicians.
This volume contains articles written by the invited speakers and workshop participants from the conference on "Crystallographic Groups and Their Generalizations", held at Katholieke Universiteit Leuven, Kortrijk (Belgium). Presented are recent developments and open problems. Topics include the theory of affine structures and polynomial structures, affine Schottky groups and crooked tilings, theory and problems on the geometry of finitely generated solvable groups, flat Lorentz 3-manifolds and Fuchsian groups, filiform Lie algebras, hyperbolic automorphisms and Anosov diffeomorphisms on infra-nilmanifolds, localization theory of virtually nilpotent groups and aspherical spaces, projective varieties, and results on affine appartment systems. Participants delivered high-level research mathematics and a discussion was held forum for new researchers. The survey results and original papers contained in this volume offer a comprehensive view of current developments in the field.