You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides comprehensive details on continuation power flow, and reviews concepts in bifurcation theory and continuation methods for assessing power system voltage stability. The author proposes a uniform framework that provides computational approaches for both short-term and long-term voltage stability phenomena. Readers can access the author’s web-based simulation tools, which are based on the advice in this book, to simulate tests of systems up to the size of 200 busses.
The increased use of power lines to interconnect multiple generating sources has lead to increased concern for preventing vulnerability to stability problems, in which failure of a single line can ultimately lead to the unanticipated blackout of an entire area served by a particular grid. Under deregulation, transmission lines become the weak link in the supply chain, and their vulnerability to stability problems assumes greater importance. This comprehensive reference will guide you through every aspect of improving the reliability and stability of electric transmission systems, so that the likelihood of such failures can be significantly reduced. You'll find coverage of hard-to-find information, such as the effect of high-speed breakers on stability, how to calculate unbalanced faults, multi-machine stability, and power factor control.
Written by a highly regarded power industry expert, this comprehensive manual covers in full detail all aspects of electric power distribution systems, both as they exist today and as they are evolving toward the future. A new chapter examines the impact of the emergence of cogeneration and distributed generation on the power distribution network. Topics include an overview of the process of electricity transmission and distribution, a thorough discussion of each component of the system - conductor supports, insulators and conductors, line equipment, substations, distribution circuits and more - as well as both overhead and underground construction considerations. Improvements in both materials and methods of power distribution are also explored, including the trend toward gradual replacement of heavier porcelain insulators with lighter polymer ones. The complex aspects of electric power distribution are explained in easy-to-understand, non-technical language.
Covers the design, operations, diagnostics and testing of electrical insulation in high-voltage power networks. The book presents the fundamental properties of dielectrics essential for the optimum design of power systems. It provides a survey of advanced digital and electro-optic techniques used in both the field and research.
This book and its accompanying CD-ROM offer a complete treatment from background theory and models to implementation and verification techniques for simulations and linear analysis of frequently studied machine systems. Every chapter of Dynamic Simulation of Electric Machinery includes exercises and projects that can be explored using the accompanying software. A full chapter is devoted to the use of MATLAB and SIMULINK, and an appendix provides a convenient overview of key numerical methods used. Dynamic Simulation of Electric Machinery provides professional engineers and students with a complete toolkit for modeling and analyzing power systems on their desktop computers.
This book deals with various aspects of scientific numerical computing. No at tempt was made to be complete or encyclopedic. The successful solution of a numerical problem has many facets and consequently involves different fields of computer science. Computer numerics- as opposed to computer algebra- is thus based on applied mathematics, numerical analysis and numerical computation as well as on certain areas of computer science such as computer architecture and operating systems. Applied Mathemalies I I I Numerical Analysis Analysis, Algebra I I Numerical Computation Symbolic Computation I Operating Systems Computer Hardware Each chapter begins with sample situations taken from specific fi...
The principles of the First Edition--to teach students and engineers the fundamentals of electrical transients and equip them with the skills to recognize and solve transient problems in power networks and components--also guide this Second Edition. While the text continues to stress the physical aspects of the phenomena involved in these problems, it also broadens and updates the computational treatment of transients. Necessarily, two new chapters address the subject of modeling and models for most types of equipment are discussed. The adequacy of the models, their validation and the relationship between model and the physical entity it represents are also examined. There are now chapters devoted entirely to isolation coordination and protection, reflecting the revolution that metal oxide surge arresters have caused in the power industry. Features additional and more complete illustrative material--figures, diagrams and worked examples. An entirely new chapter of case studies demonstrates modeling and computational techniques as they have been applied by engineers to specific problems.
Draws on both control theory and case histories to show engineers how to troubleshoot, fine tune, and enhance the operation of power and process plants. Among the topics are process instrumentation, distributed control systems, power frequency control, and software. Annotation copyrighted by Book News, Inc., Portland, OR
The approach to LO in this book is new in many aspects. In particular the IPM based development of duality theory is surprisingly elegant. The algorithmic parts of the book contain a complete discussion of many algorithmic variants, including predictor-corrector methods, partial updating, higher order methods and sensitivity and parametric analysis.