You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Much work over the last two decades has firmly established that loss of cell cycle checkpoint regulation, and resultant unabated cellular proliferation, is an inherent characteristic of cancer. This loss may occur through aberration in any single component involved in signal transduction pathways that orchestrate checkpoint regulation, which may manifest through either a failure to activate the checkpoint or a failure to respond to the activated checkpoint. In normal cells, checkpoint pathways are activated when genetic or cellular homeostasis is compromised, and signals are then transduced to re-stabilize homeostasis, and, failing this, to activate the apoptotic machinery to induce a cellul...
Over the last several decades, the introduction of new chemotherapeutic drugs and drug combinations has resulted in increased long term remission rates in several important tumor types. These include childhood leukemia, adult leukemias and lymphomas, as well as testicular and trophoblastic tumors. The addition of high-dose chemotherapy with growth factor and hemopoietic stem cell support has increased clinical remission rates even further. For the majority of patients with some of the more common malignancies, however, palliation (rather than cure) is still the most realistic goal of chemotherapy for metastatic disease. The failure of chemotherapy to cure metastatic cancer is commonly referred to among clinicians as "drug resistance". This phenomenon can, however, often be viewed as the survival of malignant cells that resulted from a failure to deliver an effective drug dose to the (cellular) target because of anyone of or combination of a multitude of individual factors. Clinically, this treatment failure is often viewed as the rapid occurrence of resistance at the single cell level. However, in experimental systems, stable drug resistance is usually relatively slow to emerge.
It was estimated that in 2008, 1,437,180 patients would receive a new cancer diagnosisand 565,650individualswould die of cancer (Jemal et al. 2008).Since the vast majority of patients dying of cancer will have had anticancer therapy, both c- ventional chemotherapy and novel targeted therapy, it can be concluded that these patients are dying with drug resistant cancer. The term multidrug resistance is also apt – in that these patients die after having undergone multiple rounds of different and structurally unrelated cancer therapies. However, for some, the concept of m- tidrug resistance is a worn out idea, stemming from disappointment with the drug resistancereversalstrategiesthatwerecarri...
Cancer Drug Design and Discovery, Second Edition is an important reference on the underlying principles for the design and subsequent development of new anticancer small molecule agents. New chapters have been added to this edition on areas of particular interest and therapeutic promise, including cancer genomics and personalized medicine, DNA-targeted agents and more. This book includes several sections on the basic and applied science of cancer drug discovery and features those drugs that are now approved for human use and are in the marketplace, as well as those that are still under development. By highlighting some of the general principles involved in taking molecules through basic scie...
Holland-Frei Cancer Medicine, Ninth Edition, offers a balanced view of the most current knowledge of cancer science and clinical oncology practice. This all-new edition is the consummate reference source for medical oncologists, radiation oncologists, internists, surgical oncologists, and others who treat cancer patients. A translational perspective throughout, integrating cancer biology with cancer management providing an in depth understanding of the disease An emphasis on multidisciplinary, research-driven patient care to improve outcomes and optimal use of all appropriate therapies Cutting-edge coverage of personalized cancer care, including molecular diagnostics and therapeutics Concise, readable, clinically relevant text with algorithms, guidelines and insight into the use of both conventional and novel drugs Includes free access to the Wiley Digital Edition providing search across the book, the full reference list with web links, illustrations and photographs, and post-publication updates
Leading experts summarize and synthesize the latest discoveries concerning the changes that occur in tumor cells as they develop resistance to anticancer drugs, and suggest new approaches to preventing and overcoming it. The authors review physiological resistance based upon tumor architecture, cellular resistance based on drug transport, epigenetic changes that neutralize or bypass drug cytotoxicity, and genetic changes that alter drug target molecules by decreasing or eliminating drug binding and efficacy. Highlights include new insights into resistance to antiangiogenic therapies, oncogenes and tumor suppressor genes in therapeutic resistance, cancer stem cells, and the development of more effective therapies. There are also new findings on tumor immune escape mechanisms, gene amplification in drug resistance, the molecular determinants of multidrug resistance, and resistance to taxanes and Herceptin.
The idea for convening a Fourth International Symposium on Platinum Coordination Complexes in Cancer Chemotherapy was born in an assembly of researchers from the Vermont Regional Cancer Center and the Norris Cotton Cancer Center who shared a common interest in metal complexes. It was agreed by those assembled that sufficient time had passed since the Third International Symposium on Platinum Coor dination Complexes in Cancer Chemotherapy held in 1976 at the Wadley Institutes of Molecular Medicine in Dallas, Texas, during which several advances in the chemistry, biochemistry, pharmacology and clinical use of platinum complexes had occurred, to warrant a fourth symposium. Furthermore, intensive investigations in progress were bringing sophisticated methodologies to bear on the problems in the field, clinical trials were yielding interesting results, and unique approaches to cancer therapy were being designed. Therefore, an organizing committee was formed and planning culminated in the symposium which was held in Burlington, Vermont, June 22-24, 1983.