You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
How quantum computing is really done: a primer for future quantum device engineers. This text offers an introduction to quantum computing, with a special emphasis on basic quantum physics, experiment, and quantum devices. Unlike many other texts, which tend to emphasize algorithms, Quantum Computing Without Magic explains the requisite quantum physics in some depth, and then explains the devices themselves. It is a book for readers who, having already encountered quantum algorithms, may ask, “Yes, I can see how the algebra does the trick, but how can we actually do it?” By explaining the details in the context of the topics covered, this book strips the subject of the “magic” with wh...
A thorough exposition of quantum computing and the underlying concepts of quantum physics, with explanations of the relevant mathematics and numerous examples. The combination of two of the twentieth century's most influential and revolutionary scientific theories, information theory and quantum mechanics, gave rise to a radically new view of computing and information. Quantum information processing explores the implications of using quantum mechanics instead of classical mechanics to model information and its processing. Quantum computing is not about changing the physical substrate on which computation is done from classical to quantum but about changing the notion of computation itself, a...
Some of the most challenging problems in science and engineering are being addressed by the integration of computation and science, a research ?eld known as computational science. Computational science plays a vital role in fundamental advances in biology, physics, chemistry, astronomy, and a host of other disciplines. This is through the coordination of computation, data management, access to instrumentation, knowledge synthesis, and the use of new devices. It has an impact on researchers and practitioners in the sciences and beyond. The sheer size of many challenges in computational science dictates the use of supercomputing, parallel and distri- ted processing, grid-based processing, adva...
A variety of programming models relevant to scientists explained, with an emphasis on how programming constructs map to parts of the computer. What makes computer programs fast or slow? To answer this question, we have to get behind the abstractions of programming languages and look at how a computer really works. This book examines and explains a variety of scientific programming models (programming models relevant to scientists) with an emphasis on how programming constructs map to different parts of the computer's architecture. Two themes emerge: program speed and program modularity. Throughout this book, the premise is to "get under the hood," and the discussion is tied to specific progr...
The four-volume set LNCS 2657, LNCS 2658, LNCS 2659, and LNCS 2660 constitutes the refereed proceedings of the Third International Conference on Computational Science, ICCS 2003, held concurrently in Melbourne, Australia and in St. Petersburg, Russia in June 2003. The four volumes present more than 460 reviewed contributed and invited papers and span the whole range of computational science, from foundational issues in computer science and algorithmic mathematics to advanced applications in virtually all application fields making use of computational techniques. These proceedings give a unique account of recent results in the field.
The thoroughly updated edition of a guide to parallel programming with MPI, reflecting the latest specifications, with many detailed examples. This book offers a thoroughly updated guide to the MPI (Message-Passing Interface) standard library for writing programs for parallel computers. Since the publication of the previous edition of Using MPI, parallel computing has become mainstream. Today, applications run on computers with millions of processors; multiple processors sharing memory and multicore processors with multiple hardware threads per core are common. The MPI-3 Forum recently brought the MPI standard up to date with respect to developments in hardware capabilities, core language ev...
A guide to the most recent, advanced features of the widely used OpenMP parallel programming model, with coverage of major features in OpenMP 4.5. This book offers an up-to-date, practical tutorial on advanced features in the widely used OpenMP parallel programming model. Building on the previous volume, Using OpenMP: Portable Shared Memory Parallel Programming (MIT Press), this book goes beyond the fundamentals to focus on what has been changed and added to OpenMP since the 2.5 specifications. It emphasizes four major and advanced areas: thread affinity (keeping threads close to their data), accelerators (special hardware to speed up certain operations), tasking (to parallelize algorithms w...
A guide to advanced features of MPI, reflecting the latest version of the MPI standard, that takes an example-driven, tutorial approach. This book offers a practical guide to the advanced features of the MPI (Message-Passing Interface) standard library for writing programs for parallel computers. It covers new features added in MPI-3, the latest version of the MPI standard, and updates from MPI-2. Like its companion volume, Using MPI, the book takes an informal, example-driven, tutorial approach. The material in each chapter is organized according to the complexity of the programs used as examples, starting with the simplest example and moving to more complex ones. Using Advanced MPI covers ...
The essential guide for writing portable, parallel programs for GPUs using the OpenMP programming model. Today’s computers are complex, multi-architecture systems: multiple cores in a shared address space, graphics processing units (GPUs), and specialized accelerators. To get the most from these systems, programs must use all these different processors. In Programming Your GPU with OpenMP, Tom Deakin and Timothy Mattson help everyone, from beginners to advanced programmers, learn how to use OpenMP to program a GPU using just a few directives and runtime functions. Then programmers can go further to maximize performance by using CPUs and GPUs in parallel—true heterogeneous programming. An...
An overview of the most prominent contemporary parallel processing programming models, written in a unique tutorial style. With the coming of the parallel computing era, computer scientists have turned their attention to designing programming models that are suited for high-performance parallel computing and supercomputing systems. Programming parallel systems is complicated by the fact that multiple processing units are simultaneously computing and moving data. This book offers an overview of some of the most prominent parallel programming models used in high-performance computing and supercomputing systems today. The chapters describe the programming models in a unique tutorial style rathe...