You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Understanding of protons and neutrons, or "nucleons"â€"the building blocks of atomic nucleiâ€"has advanced dramatically, both theoretically and experimentally, in the past half century. A central goal of modern nuclear physics is to understand the structure of the proton and neutron directly from the dynamics of their quarks and gluons governed by the theory of their interactions, quantum chromodynamics (QCD), and how nuclear interactions between protons and neutrons emerge from these dynamics. With deeper understanding of the quark-gluon structure of matter, scientists are poised to reach a deeper picture of these building blocks, and atomic nuclei themselves, as collective many-body ...
While perturbative QCD methods fully describe experimental results at high energies, and chiral perturbation theory is the low energy effective theory of the strong interactions, a form of duality is observed connecting these two regimes. In these intermediate kinematics, a wide variety of reactions are observed which can be described simultaneously by single particle (quark) scattering, and by exclusive resonance (hadron) scattering.The contributions in this proceedings volume discuss recent and existing results, and aim to foster current and future research, investigating the phenomenon of quark-hadron duality.This unique volume contains research work by scientists from different arenas of hadronic physics, dealing with different manifestations of quark-hadron duality.
The QNP series of international conferences on Quarks and Nuclear Physics is by now a well established and highly respected forum where the most recent developments in the field are discussed and communicated. QNP 2006 is the forth edition of this biennial meeting. Selected and refereed original contributions of QNP 2006 have been published in The European Physical Journal A - Hadrons and Nuclei (EPJ A), while the present proceedings book, in addition to reprinting the articles published in EPJ A, further includes all other contributions selected and accepted by the organizing committee for publication and archiving.
The birth of the Universe, and its subsequent evolution, is an exciting blend of Cosmology, Particle Physics and Thermodynamics. This book, with its synoptic approach, provides an accessible introduction to these fascinating topics. It begins in Part I with an overview of cosmology and is followed by a discussion on the present understanding about the birth of the universe, detailing the Planck Era, Inflation, and the Big Bang. It speculates the possibility of multiple universes. Before moving on to explore the essentials of the Standard Model of Particle Physics in Part II, with particular stress on the electroweak force, the first example of acquisition of mass by gauge bosons via the Higg...
The history of spin in general, and of the nucleon spin structure in particular, has been full of surprises. For the past 25 years deep inelastic lepton scattering has been studied to determine the carriers of the nucleon spin. However, it was realized only recently that a full understanding of the nucleon spin will also require detailed information on the helicity structure in the resonance region, i.e. in the realm of nonperturbative QCD.This volume gives a status report on the spin structure in the nucleon resonance region, focusing on: new experimental results from SLAC and HERMES; a first glance at the JLab experiments to map out the spin structure functions at low and intermediate four-momentum transfers; the pioneering experiment at MAMI (Mainz) to determine the Gerasimov-Drell-Hearn sum rule for real photons; and recent theoretical concepts and investigations to describe the spin structure in the frameworks of higher twist expansion, phenomenological models and chiral perturbation theory.
The history of spin in general, and of the nucleon spin structure in particular, has been full of surprises. For the past 25 years deep inelastic lepton scattering has been studied to determine the carriers of the nucleon spin. However, it was realized only recently that a full understanding of the nucleon spin will also require detailed information on the helicity structure in the resonance region, i.e. in the realm of nonperturbative QCD.This volume gives a status report on the spin structure in the nucleon resonance region, focusing on: new experimental results from SLAC and HERMES; a first glance at the JLab experiments to map out the spin structure functions at low and intermediate four-momentum transfers; the pioneering experiment at MAMI (Mainz) to determine the Gerasimov-Drell-Hearn sum rule for real photons; and recent theoretical concepts and investigations to describe the spin structure in the frameworks of higher twist expansion, phenomenological models and chiral perturbation theory.
While perturbative QCD methods fully describe experimental results at high energies, and chiral perturbation theory is the low energy effective theory of the strong interactions, a form of duality is observed connecting these two regimes. In these intermediate kinematics, a wide variety of reactions are observed which can be described simultaneously by single particle (quark) scattering, and by exclusive resonance (hadron) scattering. The contributions in this proceedings volume discuss recent and existing results, and aim to foster current and future research, investigating the phenomenon of quark-hadron duality. This unique volume contains research work by scientists from different arenas ...
This volume contains the invited talks and contributed papers presented at the workshop on ?Testing QCD Through Spin Observables in Nuclear Targets?, held at the University of Virginia in April 2002.The workshop was proposed in the context of the large number of experiments that have used polarized deuterons or polarized 3He to extract information about the spin parameters of the neutron. The motivation for this workshop was to study the effects of the nuclear medium on the spin properties of the bound nucleon and to explore issues in QCD that might be resolved through spin observables in nuclear targets: What is the effect of the nuclear medium on the measured asymmetries? How have the latest results on the spin structure of the nucleon and the nucleon form factors changed our thinking? What advances are anticipated in the development of polarized targets?
This memorial volume is dedicated to physicist Gerald E Brown (1926-2013) or 'Gerry' as he was known to his many students, postdocs, colleagues and friends. As written by one of the contributors to this book, 'Gerry was an inspiring father figure for generations of theoretical nuclear physicists and a great human being'.This book covers a wide range of topics in nuclear physics, including nuclear structure, two- and three-body nuclear forces, strangeness nuclear physics, chiral symmetry, hadrons in dense medium, hidden local symmetry, heavy quark symmetry, cosmic neutrinos, nuclear double-beta decay, neutron stars, gravitational waves, renormalization group methods, exotic nuclei, electron ion collider (EIC), and much more. Most of the authors are Gerry's former students and collaborators.We hope readers will find this book very interesting not only for its physics content but also for the window it gives into Gerry's personal legacy and humanity. This book has vivid recollections of Gerry at Stony Brook, Princeton and Copenhagen, together with his humor and his very special intuitive way of thinking.
None