You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In 1854, B Riemann introduced the notion of curvature for spaces with a family of inner products. There was no significant progress in the general case until 1918, when P Finsler studied the variation problem in regular metric spaces. Around 1926, L Berwald extended Riemann's notion of curvature to regular metric spaces and introduced an important non-Riemannian curvature using his connection for regular metrics. Since then, Finsler geometry has developed steadily. In his Paris address in 1900, D Hilbert formulated 23 problems, the 4th and 23rd problems being in Finsler's category. Finsler geometry has broader applications in many areas of science and will continue to develop through the eff...
The book introduces the basic notions in Symplectic and Contact Geometry at the level of the second year graduate student. It also contains many exercises, some of which are solved only in the last chapter.We begin with the linear theory, then give the definition of symplectic manifolds and some basic examples, review advanced calculus, discuss Hamiltonian systems, tour rapidly group and the basics of contact geometry, and solve problems in chapter 8. The material just described can be used as a one semester course on Symplectic and Contact Geometry.The book contains also more advanced material, suitable to advanced graduate students and researchers.
A comprehensive overview of cutting edge infrastructure investment topics from sector experts Infrastructure investing is one of the fastest growing and most complex asset classes facing investment professionals, practitioners, and academics. The Handbook of Infrastructure Investing examines this dynamic discipline by featuring contributions from numerous investment experts in each sector. Salient topics include timelines for domestic and international infrastructure investing; progression of strategies and present day trends; challenges of successful infrastructure programs with labor unions; events in history that have ushered in new reforms; and much more. Unearths some of the biggest inv...
This volume contains proceedings from the AMS conference on Applied Analysis held at LSU (Baton Rouge) in April 1996. Topics include partial differential equations, spectral theory, functional analysis and operator theory, complex analysis, numerical analysis and related mathematics. Applications include quantum theory, fluid dynamics, control theory and abstract issues, such as well-posedness, asymptotics, and more. The book presents the scope and depth of the conference and its lectures. The state-of-the-art surveys by Jerry Bona and Fritz Gesztesy contain topics of wide interest. There have been a number of good conferences on related topics, yet this volume offers readers a unique varied viewpoint. The scope of the material in the book will benefit readers approaching the work from diverse perspectives. It will serve those seeking motivational scientific problems, those interested in techniques and subspecialities and those looking for current results in the field
This volume contains the proceedings of the 1995 AMS-IMS-SIAM Joint Summer Research Conference on Matroid Theory held at the University of Washington, Seattle. The book features three comprehensive surveys that bring the reader to the forefront of research in matroid theory. Joseph Kung's encyclopedic treatment of the critical problem traces the development of this problem from its origins through its numerous links with other branches of mathematics to the current status of its many aspects. James Oxley's survey of the role of connectivity and structure theorems in matroid theory stresses the influence of the Wheels and Whirls Theorem of Tutte and the Splitter Theorem of Seymour. Walter Whi...
These expository accounts treat issues related to volume, geodesics, curvature and mathematical biology, with instructive examples.
This refereed collection of research papers and survey articles reflects the interplay of finite-dimensional algebras with other areas (algebraic geometry, homological algebra, and the theory of quantum groups). Current trends are presented from the discussions at the AMS-IMS-SIAM Joint Summer Research Conference at the University of Washington (Seattle). The volume features several excellent expository articles which will introduce inspiration to researchers in related areas, as it includes original papers spanning a broad spectrum of representation theory.
The Ontario conference drew workers from theoretical, applied, and algorithm finite field theory to share their recent findings applying finite fields to such areas as number theory, algebra, and algebraic geometry. The 21 topics include actions of linearized polynomials on the algebraic closure of a finite field, kernels and defaults, computing zeta functions over finite fields, and the state complexity of some long codes. No index. Member prices are $39 for institutions and $29 for individuals. Annotation copyrighted by Book News, Inc., Portland, OR
This book reflects the proceedings of the 1996 Rocky Mountain Mathematics Consortium conference on "Composition Operators on Spaces of Analytic Functions" held at the University of Wyoming. The readers will find here a collection of high-quality research and expository articles on composition operators in one and several variables. The book highlights open questions and new advances in the classical areas and promotes topics which are left largely untreated in the existing texts. In the past two decades, the study of composition operators has experienced tremendous growth. Many connections between the study of these operators on various function spaces and other branches of analysis have been established. Advances in establishing criteria for membership in different operator classes have led to progress in the study of the spectra, adjoints, and iterates of these operators. More recently, connections between these operators and the study of the invariant subspace problem, functional equations, and dynamical systems have been exploited.
This volume presents the proceedings of the workshop "Harmonic Functions on Graphs" held at the Graduate Centre of CUNY in the autumn of 1995. The main papers present material from four minicourses given by leading experts: D. Cartwright, A. Figà-Talamanca, S. Sawyer, and T. Steger. These minicrouses are introductions which gradually progress to deeper and less known branches of the subject. One of the topics treated is buildings, which are discrete analogues of symmetric spaces of arbitrary rank; buildings of rank are trees. Harmonic analysis on buildings is a fairly new and important field of research. One of the minicourses discusses buildings from the combinatorial perspective and another examines them from the p-adic perspective. the third minicourse deals with the connections of trees with p-adic analysis, and the fourth deals with random walks, ie., with the probabilistic side of harmonic functions on trees. The book also contains the extended abstracts of 19 of the 20 lectures given by the participants on their recent results. These abstracts, well detailed and clearly understandable, give a good cross-section of the present state of research in the field.