You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Basic Insights in Vector Calculus provides an introduction to three famous theorems of vector calculus, Green's theorem, Stokes' theorem and the divergence theorem (also known as Gauss's theorem). Material is presented so that results emerge in a natural way. As in classical physics, we begin with descriptions of flows.The book will be helpful for undergraduates in Science, Technology, Engineering and Mathematics, in programs that require vector calculus. At the same time, it also provides some of the mathematical background essential for more advanced contexts which include, for instance, the physics and engineering of continuous media and fields, axiomatically rigorous vector analysis, and...
Suitable for college students and college teachers in science, technology, engineering and mathematics, this book provides an introduction to several key ideas of real analysis, from Archimedes quadrature of parabola, to Calculus of Newton and Leibniz, power series, Cauchy's definitions of limit and integral, inverse function theorem, and more.
Brief, clear, and well written, this introductory treatment bridges the gap between traditional and modern algebra. Includes exercises with complete solutions. The only prerequisite is high school-level algebra. 1959 edition.
For the past several years the Division of Applied Mathematics at Brown University has been teaching an extremely popular sophomore level differential equations course. The immense success of this course is due primarily to two fac tors. First, and foremost, the material is presented in a manner which is rigorous enough for our mathematics and ap plied mathematics majors, but yet intuitive and practical enough for our engineering, biology, economics, physics and geology majors. Secondly, numerous case histories are given of how researchers have used differential equations to solve real life problems. This book is the outgrowth of this course. It is a rigorous treatment of differential equations and their appli cations, and can be understood by anyone who has had a two semester course in Calculus. It contains all the material usually covered in a one or two semester course in differen tial equations. In addition, it possesses the following unique features which distinguish it from other textbooks on differential equations.
Yosemite National Park is in California. Explore its trails to find giant trees, waterfalls, cliffs, and much more!
Is there always a prime number between $n$ and $2n$? Where, approximately, is the millionth prime? And just what does calculus have to do with answering either of these questions? It turns out that calculus has a lot to do with both questions, as this book can show you. The theme of the book is approximations. Calculus is a powerful tool because it allows us to approximate complicated functions with simpler ones. Indeed, replacing a function locally with a linear--or higher order--approximation is at the heart of calculus. The real star of the book, though, is the task of approximating the number of primes up to a number $x$. This leads to the famous Prime Number Theorem--and to the answers ...