You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Automatic speech recognition (ASR) systems are finding increasing use in everyday life. Many of the commonplace environments where the systems are used are noisy, for example users calling up a voice search system from a busy cafeteria or a street. This can result in degraded speech recordings and adversely affect the performance of speech recognition systems. As the use of ASR systems increases, knowledge of the state-of-the-art in techniques to deal with such problems becomes critical to system and application engineers and researchers who work with or on ASR technologies. This book presents a comprehensive survey of the state-of-the-art in techniques used to improve the robustness of spee...
Automatic speech recognition suffers from a lack of robustness with respect to noise, reverberation and interfering speech. The growing field of speech recognition in the presence of missing or uncertain input data seeks to ameliorate those problems by using not only a preprocessed speech signal but also an estimate of its reliability to selectively focus on those segments and features that are most reliable for recognition. This book presents the state of the art in recognition in the presence of uncertainty, offering examples that utilize uncertainty information for noise robustness, reverberation robustness, simultaneous recognition of multiple speech signals, and audiovisual speech recog...
Speech dynamics refer to the temporal characteristics in all stages of the human speech communication process. This speech “chain” starts with the formation of a linguistic message in a speaker's brain and ends with the arrival of the message in a listener's brain. Given the intricacy of the dynamic speech process and its fundamental importance in human communication, this monograph is intended to provide a comprehensive material on mathematical models of speech dynamics and to address the following issues: How do we make sense of the complex speech process in terms of its functional role of speech communication? How do we quantify the special role of speech timing? How do the dynamics r...
Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes.
This book provides a comprehensive overview of the recent advancement in the field of automatic speech recognition with a focus on deep learning models including deep neural networks and many of their variants. This is the first automatic speech recognition book dedicated to the deep learning approach. In addition to the rigorous mathematical treatment of the subject, the book also presents insights and theoretical foundation of a series of highly successful deep learning models.
Diccionario Bilingüe de Metáforas y Metonimias Científico-Técnicas presents the extensive range of metaphoric and metonymic terms and expressions that are commonly used within the fields of science, engineering, architecture and sports science. Compiled by a team of linguists working across a range of technical schools within the Universidad Politécnica de Madrid, this practical dictionary fills a gap in the field of technical language and will be an indispensable reference for students within the fields of science, engineering or sports science seeking to work internationally and for translators and interpreters working in these specialist fields.
This book describes the basic principles underlying the generation, coding, transmission and enhancement of speech and audio signals, including advanced statistical and machine learning techniques for speech and speaker recognition with an overview of the key innovations in these areas. Key research undertaken in speech coding, speech enhancement, speech recognition, emotion recognition and speaker diarization are also presented, along with recent advances and new paradigms in these areas.
Real World Speech Processing brings together in one place important contributions and up-to-date research results in this fast-moving area. The contributors to this work were selected from the leading researchers and practitioners in this field. The work, originally published as Volume 36, Numbers 2-3 of the Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, will be valuable to anyone working or researching in the field of speech processing. It serves as an excellent reference, providing insight into some of the most challenging issues being examined today.
The book provides an up-to-date and authoritative treatment of pattern recognition and computer vision, with chapters written by leaders in the field. On the basic methods in pattern recognition and computer vision, topics range from statistical pattern recognition to array grammars to projective geometry to skeletonization, and shape and texture measures. Recognition applications include character recognition and document analysis, detection of digital mammograms, remote sensing image fusion, and analysis of functional magnetic resonance imaging data, etc.