You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Multilayer networks' has become a central topic in Network Science. The book presents a comprehensive account of this emerging field. Multilayer networks are formed by several networks and include social networks, financial markets, multi-modal transportation systems, infrastructures, molecular networks and the brain.--
Advances in nanoscale science show that the properties of many materials are dominated by internal structures. In molecular cases, such as window glass and proteins, these internal structures obviously have a network character. However, in many partly disordered electronic materials, almost all attempts at understanding are based on traditional continuum models. This workshop focuses first on the phase diagrams and phase transitions of materials known to be composed of molecular networks. These phase properties characteristically contain remarkable features, such as intermediate phases that lead to reversibility windows in glass transitions as functions of composition. These features arise a...
There is considerable interest in the intrinsically multiscale structure and dynamics of complex electronic oxides, especially since these materials include those of technological importance, such as colossal magnetoresistance manganites and cuprate high temperature superconductors. Current microscopies, such as diffuse X-ray and inelastic neutron scattering, electromagnetic and acoustic response, NMR and scanning tunneling microscope probes, have revealed static and dynamic multiscale patterns in charge positioning, lattice structure and magnetic orientation, that respond to both external stress and magnetic field. These self-organized patterns include charge and orbital ordering; stripes in strain/spin; and labyrinth-like conductance modulations. The materials exhibit nanoscale phase segregation and mesoscale inhomogeneous clustering, and their phase transitions can have a percolative character.This volume presents experimental and theoretical work on these exciting new developments in condensed matter physics and materials science.
In July 2000 a conference was held to honour the 65th birthdays of four of the leading international figures in the field of quantum many-body theory. The joint research careers of John Clark, Alpo Kallio, Manfred Ristig and Sergio Rosati total some 150 years, and this festschrift celebrated their achievements. These cover a remarkably wide spectrum. The topics in this book reflect that diversity, ranging from formal aspects to real systems, including nuclear and subnuclear systems, quantum fluids and solids, quantum spin systems and strongly correlated electron systems. The book collects more than 30 invited contributions from eminent scientists, chosen both from among the participants at t...
In July 2000 a conference was held to honour the 65th birthdays of four of the leading international figures in the field of quantum many-body theory. The joint research careers of John Clark, Alpo Kallio, Manfred Ristig and Sergio Rosati total some 150 years, and this festschrift celebrated their achievements. These cover a remarkably wide spectrum. The topics in this book reflect that diversity, ranging from formal aspects to real systems, including nuclear and subnuclear systems, quantum fluids and solids, quantum spin systems and strongly correlated electron systems. The book collects more than 30 invited contributions from eminent scientists, chosen both from among the participants at the conference and from colleagues who were unable to attend but nevertheless wished to contribute. To match the high standing of the honourees, the articles are of an exceptionally high quality. Together they provide a vivid overview of current work across the spectrum of quantum many-body theory.
Attempts to treat electron-phonon coupled systems, with emphasis on Many Body aspects for dense electron systems, taking into account continuum as well as lattice polaron effects. This work aims to introduce the study of such systems, where strong electron-electron correlations and large electron-phonon coupling strengths play important roles.
The cryosphere is very sensitive to climate change, and glaciers represent one of the most important archives of atmospheric composition and its variability. From the Himalaya to the European Alps, the longest mid-latitude mountain chain in the world, lie thousands of glaciers that have collected atmospheric compounds over the last millennia. China and Italy are located at the opposite terminals of this long mountain chain, comprising strategic positions for understanding climate evolution and providing important information for the modeling of future climates. The results presented are highlights of some of the most recent advances in cryospheric studies, especially on the topic of mineral dust and aerosols in the atmosphere. They evidence the complexity of the chemical–physical processes involving solid compounds occurring in glacier, snow, and permafrost environments, covering different aspects such as spatial and temporal trends, as well as the impact of mineral and nonmineral particles. Results also show that recent advances in measurement techniques and source apportionment may be powerful and sophisticated tools to provide novel, high-quality scientific information.
Advances in Catalysis
Core-level Spectroscopy in Condensed Systems describes how recent improvement of various experimental methods, together with new light and x-ray sources, have provided fresh information about the electronic states and atomic structures of a wide variety of materials. The topics coveredrange from the high-energy spectroscopy of bulk electronic states of rare-earth and transition metals and compounds, including high T superconductors, to recent developments in photoelectron diffraction and other surface problems, all with emphasis on theoretical aspects.