You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Written to complement standard texts on commutative algebra, this short book gives complete and relatively easy proofs of important results, including the standard results involving localisation of formal smoothness (M. André) and localisation of complete intersections (L. Avramov), some important results of D. Popescu and André on regular homomorphisms, and some results from A. Grothendieck's EGA on smooth homomorphisms. The authors make extensive use of the André–Quillen homology of commutative algebras, but only up to dimension 2, which is easy to construct, and they deliberately avoid using simplicial methods. The book also serves as an accessible introduction to some advanced topics and techniques. The only prerequisites are a basic course in commutative algebra and the first definitions in homological algebra.
This book is an inspirational introduction to modern research directions and scholarship in nonlinear dynamics, and will also be a valuable reference for researchers in the field. With the scholarly level aimed at the beginning graduate student, the book will have broad appeal to those with an undergraduate background in mathematical or physical sciences.In addition to pedagogical and new material, each chapter reviews the current state of the area and discusses classic and open problems in engaging, surprisingly non-technical ways. The contributors are Brian Davies (bifurcations in maps), Nalini Joshi (integrable systems and asymptotics), Alan Newell (wave turbulence and pattern formation), Mark Ablowitz (nonlinear waves), Carl Weiss (spatial solitons), Cathy Holmes (Hamiltonian systems), Tony Roberts (dissipative fluid mechanics), Jorgen Frederiksen (two-dimensional turbulence), and Mike Lieberman (Fermi acceleration).
Presents reissued articles from two classic sources on hyperbolic manifolds. Part I is an exposition of Chapters 8 and 9 of Thurston's pioneering Princeton Notes; there is a new introduction describing recent advances, with an up-to-date bibliography, giving a contemporary context in which the work can be set. Part II expounds the theory of convex hull boundaries and their bending laminations. A new appendix describes recent work. Part III is Thurston's famous paper that presents the notion of earthquakes in hyperbolic geometry and proves the earthquake theorem. The final part introduces the theory of measures on the limit set, drawing attention to related ergodic theory and the exponent of convergence. The book will be welcomed by graduate students and professional mathematicians who want a rigorous introduction to some basic tools essential for the modern theory of hyperbolic manifolds.
Foundations of higher dimensional category theory for graduate students and researchers in mathematics and mathematical physics.
The symposium held in honour of the 60th birthday of Graeme Segal brought together leading physicists and mathematicians. Its topics were centred around string theory, M-theory, and quantum gravity on the one hand, and K-theory, elliptic cohomology, quantum cohomology and string topology on the other. Geometry and quantum physics developed in parallel since the recognition of the central role of non-abelian gauge theory in elementary particle physics in the late seventies and the emerging study of super-symmetry and string theory. With its selection of survey and research articles these proceedings fulfil the dual role of reporting on developments in the field and defining directions for future research. For the first time Graeme Segal's manuscript 'The definition of Conformal Field Theory' is published, which has been greatly influential over more than ten years. An introduction by the author puts it into the present context.
The lectures that comprise this volume constitute a comprehensive survey of the many and various aspects of integrable dynamical systems. The present edition is a streamlined, revised and updated version of a 1997 set of notes that was published as Lecture Notes in Physics, Volume 495. This volume will be complemented by a companion book dedicated to discrete integrable systems. Both volumes address primarily graduate students and nonspecialist researchers but will also benefit lecturers looking for suitable material for advanced courses and researchers interested in specific topics.
Les Houches School, October 11-15, 1999
This 121st IMA volume, entitled MATHEMATICAL MODELS FOR BIOLOGICAL PATTERN FORMATION is the first of a new series called FRONTIERS IN APPLICATION OF MATHEMATICS. The FRONTIERS volumes are motivated by IMA pro grams and workshops, but are specially planned and written to provide an entree to and assessment of exciting new areas for the application of mathematical tools and analysis. The emphasis in FRONTIERS volumes is on surveys, exposition and outlook, to attract more mathematicians and other scientists to the study of these areas and to focus efforts on the most important issues, rather than papers on the most recent research results aimed at an audience of specialists. The present volume ...
A novel approach to analysing initial-boundary value problems for integrable partial differential equations (PDEs) in two dimensions, based on ideas of the inverse scattering transform that the author introduced in 1997. This method is unique in also yielding novel integral representations for linear PDEs. Several new developments are addressed in the book, including a new transform method for linear evolution equations on the half-line and on the finite interval; analytical inversion of certain integrals such as the attenuated Radon transform and the Dirichlet-to-Neumann map for a moving boundary; integral representations for linear boundary value problems; analytical and numerical methods for elliptic PDEs in a convex polygon; and integrable nonlinear PDEs. An epilogue provides a list of problems on which the author's new approach has been used, offers open problems, and gives a glimpse into how the method might be applied to problems in three dimensions.