You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This 121st IMA volume, entitled MATHEMATICAL MODELS FOR BIOLOGICAL PATTERN FORMATION is the first of a new series called FRONTIERS IN APPLICATION OF MATHEMATICS. The FRONTIERS volumes are motivated by IMA pro grams and workshops, but are specially planned and written to provide an entree to and assessment of exciting new areas for the application of mathematical tools and analysis. The emphasis in FRONTIERS volumes is on surveys, exposition and outlook, to attract more mathematicians and other scientists to the study of these areas and to focus efforts on the most important issues, rather than papers on the most recent research results aimed at an audience of specialists. The present volume ...
This self-contained introduction to the fast-growing field of Mathematical Biology is written for students with a mathematical background. It sets the subject in a historical context and guides the reader towards questions of current research interest. A broad range of topics is covered including: Population dynamics, Infectious diseases, Population genetics and evolution, Dispersal, Molecular and cellular biology, Pattern formation, and Cancer modelling. Particular attention is paid to situations where the simple assumptions of homogenity made in early models break down and the process of mathematical modelling is seen in action.
Alan Turing (1912–1954) made seminal contributions to mathematical logic, computation, computer science, artificial intelligence, cryptography and theoretical biology. In this volume, outstanding scientific thinkers take a fresh look at the great range of Turing's contributions, on how the subjects have developed since his time, and how they might develop still further. The contributors include Martin Davis, J. M. E. Hyland, Andrew R. Booker, Ueli Maurer, Kanti V. Mardia, S. Barry Cooper, Stephen Wolfram, Christof Teuscher, Douglas Richard Hofstadter, Philip K. Maini, Thomas E. Woolley, Eamonn A. Gaffney, Ruth E. Baker, Richard Gordon, Stuart Kauffman, Scott Aaronson, Solomon Feferman, P. D. Welch and Roger Penrose. These specially commissioned essays will provoke and engross the reader who wishes to understand better the lasting significance of one of the twentieth century's deepest thinkers.
This text explores the use of cellular automata in modeling pattern formation in biological systems. It describes several mathematical modeling approaches utilizing cellular automata that can be used to study the dynamics of interacting cell systems both in simulation and in practice. New in this edition are chapters covering cell migration, tissue development, and cancer dynamics, as well as updated references and new research topic suggestions that reflect the rapid development of the field. The book begins with an introduction to pattern-forming principles in biology and the various mathematical modeling techniques that can be used to analyze them. Cellular automaton models are then discu...
You’re outnumbered, in fear for your life, surrounded by flesheating zombies. What can save you now? Mathematics, of course. Mathematical Modelling of Zombies engages the imagination to illustrate the power of mathematical modelling. Using zombies as a “hook,” you’ll learn how mathematics can predict the unpredictable. In order to be prepared for the apocalypse, you’ll need mathematical models, differential equations, statistical estimations, discretetime models, and adaptive strategies for zombie attacks—as well as baseball bats and Dire Straits records (latter two items not included). In Mathematical Modelling of Zombies, Robert Smith? brings together a highly skilled team of c...
This book questions the relevance of computation to the physical universe. Our theories deliver computational descriptions, but the gaps and discontinuities in our grasp suggest a need for continued discourse between researchers from different disciplines, and this book is unique in its focus on the mathematical theory of incomputability and its relevance for the real world. The core of the book consists of thirteen chapters in five parts on extended models of computation; the search for natural examples of incomputable objects; mind, matter, and computation; the nature of information, complexity, and randomness; and the mathematics of emergence and morphogenesis. This book will be of interest to researchers in the areas of theoretical computer science, mathematical logic, and philosophy.
An interdisciplinary study explaining the dynamics underlying biological motion – one of the most obvious expressions of self-organization. Designed for a broad audience from bioscientists to applied mathematicians, this book considers possible synergetic mechanisms of interaction and cooperation on different microscopic levels.