You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is a collection of papers on the subject of nonlinear dynamics and its applications written by experts in this field. It offers the reader a sampling of exciting research areas in this fast-growing field. The topics covered include chaos, tools to analyze motions, fractal boundaries, dynamics of the Fitzhugh-Nagumo equation, structural control, separation of contaminations from signal of interest, parametric excitation, stochastic bifurcation, mode localization in repetitive structures, Toda lattice, transition from soliton to chaotic motion, nonlinear normal modes, noise perturbations of nonlinear dynamical systems, and phase locking of coupled limit cycle oscillators. Mathematica...
This series of volumes constitutes an outstanding collection of contributions by the most active research workers in the area of acoustics and mechanics. It brings the reader up to date on the status of the various aspects of research in this field. The volumes should preserve their value for a long time, as they represent a monument to the achievements of human research capabilities in the underwater-acoustics aspects of the environment.
Structural control offers opportunities to design new structures and to retrofit existing structures by the application of counter-forces, smart materials, frictional devices, etc., instead of just increasing the strength of the structure at greater cost.The Association for the Control of Structures (ACS) is promoting in Europe the development of this new technology in architectural design and infrastructure renewal and rehabilitation. The First European Conference on Structural Control was organized as one of the major initiatives toward this objective.
The functionality of modern structural, mechanical and electrical or electronic systems depends on their ability to perform under uncertain conditions. Consideration of uncertainties and their effect on system behavior is an essential and integral part of defining systems. In eleven chapters, leading experts present an overview of the current state of uncertainty modeling, analysis and design of large systems in four major areas: finite and boundary element methods (common structural analysis techniques), fatigue, stability analysis, and fault-tolerant systems. The content of this book is unique; it describes exciting research developments and challenges in emerging areas, and provide a sophisticated toolbox for tackling uncertainty modeling in real systems.
This book is a collection of papers on the subject of applied system dynamics and control written by experts in this field. It offers the reader a sampling of exciting research areas in three fast-growing branches: (i) Wave Motion (ii) Intelligent Structures (iii) Nonlinear Mechanics. The topics covered include flow instability, nonlinear mode localization autoparametric systems with pendula, and geometric stiffening in multibody dynamics. Mathematical methods include perturbation methods, modern control theory, nonlinear neural nets, and resonance scattering theory of berall-Ripoche-Maze. Applications include sound-induced structural vibrations, fiber acoustic waveguides, vibration suppression of structures, linear control of gyroscopic systems, and nonlinear control of distributed systems.This book shows how applied system dynamics and control is currently being utilized and investigated. It will be of interest to engineers, applied mathematicians and physicists.
The interaction of acoustic fields with submerged elastic structures, both by propagation and scattering, is being investigated at various institutions and laboratories world-wide with ever-increasing sophistication of experiments and analysis. This book offers a collection of contributions from these research centers that represent the present state-of-the-art in the study of acoustic elastic interaction, being on the cutting edge of these investigations. This includes the description of acoustic scattering from submerged elastic objects and shells by the Resonance Scattering Theory of Flax, Dragonette and berall, and the interaction of these phenomena in terms of interface waves. It also...
"\berall's work in acoustic and electromagnetic scattering has evoked much interest, in the US as well as abroad, because of its possible practical applications, as well as the theoretical understanding. Many collaborators have been inspired by it, and have now contributed to this volume. The book is an excellent contribution to the literature of Acoustics and Wave Propagation. Professor Guran is to be congratulated for organizing and editing this volume." Prof. Hans A Bethe Noble Laureate Cornell University, 1996
This book treats stability problems of equilibrium states of elastic rods. Euler energy and dynamical methods of stability analysis are introduced and stability criteria for each method is developed. Stability analysis is accompanied by a number of classical conservative and non-conservative, two- and three-dimensional problems. Some problems are treated by all three methods. Many generalized versions of known problems are presented (heavy vertical rod, rotating rod, Greenhill's problem, Beck's column, Pflger's rod, strongest column, etc.). The generalizations consist in using either a generalized form of constitutive equations or a more general form of loading, or both. Special attention is paid to the influence of shear stresses and axis compressibility on the value of the critical load. Variational methods are applied to obtain estimates of the critical load and maximal deflection in the post-critical state, in a selected number of examples.
This book shows clearly how the study of concrete control systems has motivated the development of the mathematical tools needed for solving such problems. In many cases, by using this apparatus, far-reaching generalizations have been made, and its further development will have an important effect on many fields of mathematics.In the book a way is demonstrated in which the study of the Watt flyball governor has given rise to the theory of stability of motion. The criteria of controllability, observability, and stabilization are stated. Analysis is made of dynamical systems, which describe an autopilot, spacecraft orientation system, controllers of a synchronous electric machine, and phase-locked loops. The Aizerman and Brockett problems are discussed and an introduction to the theory of discrete control systems is given.
This is a book for those who want to understand the main ideas in the theory of optimal problems. It provides a good introduction to classical topics (under the heading of “the calculus of variations”) and more modern topics (under the heading of “optimal control”). It employs the language and terminology of functional analysis to discuss and justify the setup of problems that are of great importance in applications. The book is concise and self-contained, and should be suitable for readers with a standard undergraduate background in engineering mathematics.