You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The synthetic counterparts of natural polymeric materials are now finding applications as light weight, mechanically strong, and environmentally stable sheets, fibers, films, adhesives, paints, and foams have replaced most of the commodity and structural materials. The systematic research on the preparation, characterization, and utilization of plastics resulted in creation of polymers often containing a set of several desirable properties in a single polymer. The polymers have established their place in engineering applications as well. Although the bulk of plastics production focuses on relatively simple commodity polymers, the proportion of specially designed and tailor-made plastics for ...
Electrochemical Sensor Analysis (ECSA) presents the recent advances in electrochemical (bio)sensors and their practical applications in real clinical, environment, food and industry related samples, as well as in the safety and security arena. In a single source, it covers the entire field of electrochemical (bio)sensor designs and characterizations. The 38 chapters are grouped in seven sections: 1) Potentiometric sensors, 2) Voltammetric sensors, 3) Electrochemical gas sensors 4) Enzyme-based sensors 5) Affinity biosensors 6) Thick and thin film biosensors and 7) Novel trends. Written by experts working in the diverse technological and scientific fields related to electrochemical sensors, each section provides an overview of a specific class of electrochemical sensors and their applications. This interdisciplinary text will be useful for researchers and professionals alike. - Covers applications and problem solving (sensitivity, interferences) in real sample analysis - Details procedures to construct and characterize electrochemical (bio)sensors
For more than three decades the Electroanalytical Chemistry Series has delivered the most in-depth and critical research related to issues in electrochemistry. Volume 24 continues this gold-standard with practical reviews of recent applications as well as innovative contributions from internationally respected specialists who highlight the emergenc
Reference Electrodes are a crucial part of any electrochemical system, yet an up-to-date and comprehensive handbook is long overdue. Here, an experienced team of electrochemists provides an in-depth source of information and data for the proper choice and construction of reference electrodes. This includes all kinds of applications such as aqueous and non-aqueous solutions, ionic liquids, glass melts, solid electrolyte systems, and membrane electrodes. Advanced technologies such as miniaturized, conducting-polymer-based, screen-printed or disposable reference electrodes are also covered. Essential know-how is clearly presented and illustrated with almost 200 figures.
The present volume is the second in a two-volume set dealing with modelling and numerical simulations in electrochemistry. Emphasis is placed on the aspect of nanoelectrochemical issues. It seems appropriate at this juncture to mention the n- growing body of opinion in some circles that George Box was right when he stated, three decades ago, that “All models are wrong, but some are useful”. Actually, when the statement itself was made it would have been more appropriate to say that “All models are inaccurate but most are useful nonetheless”. At present, however, the statement, as it was made, is far more appropriate and closer to the facts than ever before. Currently, we are in the m...
This ninth volume in the series concentrates on in situ spectroscopic methods and combines a balanced mixture of theory and applications, making it highly readable for chemists and physicists, as well as for materials scientists and engineers. As with the previous volumes, all the chapters continue the high standards of this series, containing numerous references to further reading and the original literature, for easy access to this new field. The editors have succeeded in selecting highly topical areas of research and in presenting authors who are leaders in their fields, covering such diverse topics as diffraction studies of the electrode-solution interface, thin organic films at electrode surfaces, linear and non-linear spectroscopy as well as sum frequency generation studies of the electrified solid-solution interface, plus quantitative SNIFTIRS and PM-IRRAS. Special attention is paid to recent advances and developments, which are critically and thoroughly discussed. The result is a compelling set of reviews, serving equally well as an excellent and up-to-date source of information for experienced researchers in the field, as well as as an introduction for newcomers.
This issue of ECS Transactions honors Professor Jiri (Art) Janata for his 35 years of contribution to the development of chemical sensors. It focuses on all aspects of chemical sensor technology including organic semiconductor devices, sensing materials, micro and nanomachining, fabrication processes, packaging, and the application of these structures and processes to the miniaturization of chemical sensors, biosensors, miniature chemical analysis systems and other devices and methods for chemical analysis.
Ion-selective electrodes (ISEs) have a wide range of applications in clinical, environmental, food and pharmaceutical analysis as well as further uses in chemistry and life sciences. Based on his profound experience as a researcher in ISEs and a course instructor, the author summarizes current knowledge for advanced teaching and training purposes with a particular focus on ionophore-based ISEs. Coverage includes the basics of measuring with ISEs, essential membrane potential theory and a comprehensive overview of the various classes of ion-selective electrodes. The principles of constructing ISEs are outlined, and the transfer of methods into routine analysis is considered. Advanced students, researchers, and practitioners will benefit from this expedient introduction.
The papers included in this issue of ECS Transactions were originally presented in the symposium ¿Physical, Electroanalytical, and Bioanalytical Electrochemistry¿, held during the 216th meeting of The Electrochemical Society, in Vienna, Austria from October 4 to 9, 2009.