You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Here, leading scientists present an overview of the most modern experimental and theoretical methods for studying electronic correlations on surfaces, in thin films and in nanostructures. In particular, they describe in detail coincidence techniques for studying many-particle correlations while critically examining the informational content of such processes from a theoretical point viewpoint. Furthermore, the book considers the current state of incorporating many-body effects into theoretical approaches. Covered topics: -Auger-electron photoelectron coincidence experiments and theories -Correlated electron emission from atoms, fullerens, clusters, metals and wide-band gap materials -Ion coincidence spectroscopies and ion scattering theories from surfaces -GW and dynamical mean-field approaches -Many-body effects in electronic and optical response
This important book contains the invited papers (plenary and review lectures, progress and special reports) presented at XX.ICPEAC, the Twentieth International Conference on the Physics of Electronic and Atomic Collisions. It highlights the current status of research in photonic, electronic and atomic collision physics, for which experimental studies increasingly rely on laser and synchrotron radiation and are more and more interrelated with other fields, such as molecular and chemical physics, surface science, quantum optics, and spectroscopy and formation of exotic atoms.
The last few years have seen some remarkable advances in the understanding of atomic phenomena. It is now possible to isolate atomic systems in traps, measure in coincidence the fragments of collision processes, routinely produce, and study multicharged ions. One can look at bulk matter in such a way that the fundamental atomic character is clearly evident and work has begun to tease out the properties of anti matter. The papers in this book reflect many aspects of modem Atomic Physics. They correspond to the invited talks at a conference dedicated to the study of "New Directions in Atomic Physics," which took place in Magdalene College, Cambridge in July of 1998. The meeting was designed as...
Electron and Photon Impact Ionisation and Related Topics 2002 provides an overview of recent international research in the field of ionization by electron and photon impact. Emphasizing multi-particle coincidence studies, such as (e,2e), (e,3e), ionization-excitation, and double photo-ionization, the book contains 18 contributions of recent experimental, theoretical, and computational achievements in the realization, interpretation, and modeling of correlated processes that involve a wide range of targets, including atoms, molecules, and surfaces. It also covers nuclear reactions and interaction of electrons, photons, and ions with biological matter. This book is an essential reference for researchers working in atomic and molecular physics, surface science, chemistry, and biophysics.
An (e,2e) experiment is the measurement of an electron impact ionization process where both the exiting electrons are detected in coincidence. Such measurements are almost at the limit of what can be known, in quantum mechanical terms, and its description presents a substantial theoretical challenge. There are at least two very good reasons for studying (e,2e) and related processes. In the first place we are now only beginning to understand the dynamics of the collision process. The range and sophistication of present experiments allow us to identify kinematic regimes where delicate and subtle effects can be observed, stretching current theories to their limit. Secondly, the multiple coincid...
Soft X-rays are a powerful probe of matter. They interact selectively with electrons in atoms and molecules and can be used to study atomic physics, chemical reactions, surfaces and solids, and biological entities. Over the past 20 years, synchrotrons have emerged as powerful sources of soft X-rays for experimental use. A new, third generation of synchrotron light sources is scheduled to start operation over the next few years, beginning in 1993. These facilities are distinguished by their ultra-low emittance electron beams and by their undulators -- precisely engineered magnetic devices that cause the electrons passing through them to produce highly coherent X-rays and ultraviolet light of ...
There is a unity to physics; it is a discipline which provides the most fundamental understanding of the dynamics of matter and energy. To understand anything about a physical system you have to interact with it and one of the best ways to learn something is to use electrons as probes. This book is the result of a meeting, which took place in Magdalene College Cambridge in December 2001. Atomic, nuclear, cluster, soHd state, chemical and even bio- physicists got together to consider scattering electrons to explore matter in all its forms. Theory and experiment were represented in about equal measure. It was meeting marked by the most lively of discussions and the free exchange of ideas. We a...
This is the second in a series of "International Workshops on Electron Correlations and Materials Properties. " The aim of this series of workshops is to provide a periodic (triennial) and in-depth assessment of advances in the study and understanding of the effects that electron-electron interactions in solids have on the determination of measurable properties of materials. The workshop is structured to include exposure to experimental work, to phenomenology, and to ab initio theory. Since correlation effects are pervasive the workshop aims to concentrate on the identification of promising developing methodology, experimental and theoretical, addressing the most critical frontier issues of ...
The great advantage of coincidence measurements is that by suitable choice of the kinematical and geometrical arrangement one may probe delicate physical effects which would be swamped in less differential experiments. The measurement of the triple dif ferential and higher-order cross sections presents enormous technical difficulties, but refined experiments of this type provide an insight into the subtleties of the scattering process and offer a welcome, if severe, test of the available theoretical models. The last few years have been an exciting time to work in the field and much has been learned. Profound insights have been gleaned into the basic Coulomb few body problem in atomic physics...
The main purpose of this book is to provide an overview of all phenomena which can be categorized under the general label of “electron scattering”, and to give a comprehensive description of all spectroscopical techniques related to electron scattering phenomena. Various classes of events are examined (electron in-electron out, photon in-electron out, electron in-two electron out, electron diffraction), together with the corresponding experimental techniques. A description of the underlying physics of various electron scattering phenomena is provided. For each spectroscopy, the general principles, the main fields of application, and some selected representative cases are discussed. The use of relatively low-cost electron sources is emphasized with respect to photon sources. The book is directed to PhD students and researchers not necessarily yet expert in the field.