You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This exhaustive survey is the result of a four year effort by many leading researchers in the field to produce both a readable introduction and a yardstick for the many upcoming experiments using heavy ion collisions to examine the properties of nuclear matter. The books falls naturally into five large parts, first examining the bulk properties of strongly interacting matter, including its equation of state and phase structure. Part II discusses elementary hadronic excitations of nuclear matter, Part III addresses the concepts and models regarding the space-time dynamics of nuclear collision experiments, Part IV collects the observables from past and current high-energy heavy-ion facilities in the context of the theoretical predictions specific to compressed baryonic matter. Part V finally gives a brief description of the experimental concepts. The book explicitly addresses everyone working or planning to enter the field of high-energy nuclear physics.
This volume is the outcome of a community-wide review of the field of dynamics and thermodynamics with nuclear degrees of freedom. It presents the achievements and the outstanding open questions in 26 articles collected in six topical sections and written by more than 60 authors. All authors are internationally recognized experts in their fields.
This handbook is a comprehensive, systematic source of modern nuclear physics. It aims to summarize experimental and theoretical discoveries and an understanding of unstable nuclei and their exotic structures, which were opened up by the development of radioactive ion (RI) beam in the late 1980s. The handbook comprises three major parts. In the first part, the experiments and measured facts are well organized and reviewed. The second part summarizes recognized theories to explain the experimental facts introduced in the first part. Reflecting recent synergistic progress involving both experiment and theory, the chapters both parts are mutually related. The last part focuses on cosmo-nuclear physics—one of the mainstream subjects in modern nuclear physics. Those comprehensive topics are presented concisely. Supported by introductory reviews, all chapters are designed to present their topics in a manner accessible to readers at the graduate level. The book therefore serves as a valuable source for beginners as well, helping them to learn modern nuclear physics.
This book provides a detailed investigation into the evidence implicating oxygen radicals in the etiology of eleven different human diseases or conditions. World renowned experts from each discipline review the data supporting this involvement, and discuss the full implications that result. Topics covered include Alzheimer's disease, cerebral ischemia, rheumatoid arthritis, inflammatory bowel disease, atherosclerosis, ARDS, critical care medicine and cancer. This book not only provides an invaluable resource for those seeking up to date information on the evidence supporting the involvement of oxygen radicals in human disease, but also instigates theoretical discussion of future research endeavors.
Extensive research has uncovered a set of molecular surveillance mechanisms – commonly called “checkpoints” – which tightly monitor cell-cycle processes. Today’s anticancer drug development has identified many of these cell-cycle checkpoint molecules as effective targets. Research now promises to uncover a new generation of anticancer drugs with improved therapeutic indices based on their ability to target emerging checkpoint components. Checkpoint Responses in Cancer Therapy summarizes the advances made over the past 20 years, identifying components of cell-cycle checkpoints and their molecular regulation during checkpoint activation and validating the use of checkpoint proteins a...
The unique role of strangeness in nuclear physics has recently attracted much attention, from both the theoretical and experimental viewpoints. This is due not only to the broad spectrum of possible hadron many-body systems with strangeness, but also to the fact that strangeness gives us an opportunity to study fundamental baryon-baryon interactions in a new perspective. Our knowledge of this subject has widened as the scope of hypernuclear experiments has expanded from strangeness exchange and the associated production reactions to hypernuclear weak decays, ? decays, cascade hypernuclei, double-? events, electroproduction of strangeness, etc. This trend will be accelerated by the full operation of new laboratories such as TJLab, COSY, DAèNE, JHF, MAMI, and others. Various aspects of those important and exciting topics are discussed in this book in order to get a perspective of this fast developing area of nuclear physics.
Investigations on various aspects of plant-pathogen interactions have the ultimate aim of providing information that may be useful for the development of effective crop disease management systems. Molecular techniques have accelerated the formulation of short- and long-term strategies of disease management. Exclusion and eradication of plant pathogens by rapid and precise detection and identification of microbial pathogens in symptomatic and asymptomatic plants and planting materials by employing molecular methods has been practiced extensively by quarantines and certification programs with a decisive advantage. Identification of sources of resistance genes, cloning and characterization of d...
This book aims to provide a detailed introduction to the state-of-the-art covariant density functional theory, which follows the Lorentz invariance from the very beginning and is able to describe nuclear many-body quantum systems microscopically and self-consistently. Covariant density functional theory was introduced in nuclear physics in the 1970s and has since been developed and used to describe the diversity of nuclear properties and phenomena with great success.In order to provide an advanced and updated textbook of covariant density functional theory for graduate students and nuclear physics researchers, this book summarizes the enormous amount of material that has accumulated in the field of covariant density functional theory over the last few decades as well as the latest developments in this area. Moreover, the book contains enough details for readers to follow the formalism and theoretical results, and provides exhaustive references to explore the research literature.
With potentially high specificity and low toxicity, biologicals offer promising alternatives to small-molecule drugs. Peptide therapeutics have again become the focus of innovative drug development efforts backed up by a resurgence of venture funds and small biotechnology companies. What does it take to develop a peptide-based medicine? What are the key challenges and how are they overcome? What are emerging therapeutics for peptide modalities? This book answers these questions with a holistic story from molecules to medicine, combining the themes of design, synthesis and clinical applications of peptide-based therapeutics and biomarkers. Chapters are written and edited by leaders in the fie...