Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Applications of Hypergroups and Related Measure Algebras
  • Language: en
  • Pages: 458

Applications of Hypergroups and Related Measure Algebras

`The most important single thing about this conference was that it brought together for the first time representatives of all major groups of users of hypergroups. [They] talked to each other about how they were using hypergroups in fields as diverse as special functions, probability theory, representation theory, measure algebras, Hopf algebras, and Hecke algebras. This led to fireworks.' - from the Introduction. Hypergroups occur in a wide variety of contexts, and mathematicians the world over have been discovering this same mathematical structure hidden in very different applications. The diverse viewpoints on the subject have led to the need for a common perspective, if not a common theory. Presenting the proceedings of a Joint Summer Research Conference held in Seattle in the summer of 1993, this book will serve as a valuable starting point and reference tool for the wide range of users of hypergroups and make it easier for an even larger audience to use these structures in their work.

Harmonic Analysis of Probability Measures on Hypergroups
  • Language: en
  • Pages: 609

Harmonic Analysis of Probability Measures on Hypergroups

The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high ...

Harmonic Analysis On Hypergroups: Approximation And Stochastic Sequences
  • Language: en
  • Pages: 621

Harmonic Analysis On Hypergroups: Approximation And Stochastic Sequences

The book aims at giving a monographic presentation of the abstract harmonic analysis of hypergroups, while combining it with applied topics of spectral analysis, approximation by orthogonal expansions and stochastic sequences. Hypergroups are locally compact Hausdorff spaces equipped with a convolution, an involution and a unit element. Related algebraic structures had already been studied by Frobenius around 1900. Their axiomatic characterisation in harmonic analysis was later developed in the 1970s. Hypergoups naturally emerge in seemingly different application areas as time series analysis, probability theory and theoretical physics.The book presents harmonic analysis on commutative and polynomial hypergroups as well as weakly stationary random fields and sequences thereon. For polynomial hypergroups also difference equations and stationary sequences are considered. At greater extent than in the existing literature, the book compiles a rather comprehensive list of hypergroups, in particular of polynomial hypergroups. With an eye on readers at advanced undergraduate and graduate level, the proofs are generally worked out in careful detail. The bibliography is extensive.

Generalized Harmonic Analysis and Wavelet Packets
  • Language: en
  • Pages: 322

Generalized Harmonic Analysis and Wavelet Packets

  • Type: Book
  • -
  • Published: 2001-03-07
  • -
  • Publisher: CRC Press

The book presents a more comprehensive treatment of transmutation operators associated with the Bessel operator, and explores many of their properties. They are fundamental in the complete study of the Bessel harmonic analysis and the Bessel wavelet packets. Many applications of these theories and their generalizations have been injected throughout the text by way of a rich collection of problems and references. The results and methods in this book should be of interest to graduate and researchers working in special functions such as Fourier analysis, hypergroup and operator theories, differential equations, probability theory and mathematical physics. Background materials are given in adequate detail to enable a graduate student to proceed rapidly from the very basics of the frontier of research in the area of generalized harmonic analysis and wavelets.

Functional Equations on Hypergroups
  • Language: en
  • Pages: 210

Functional Equations on Hypergroups

The theory of hypergroups is a rapidly developing area of mathematics due to its diverse applications in different areas like probability, harmonic analysis, etc. This book exhibits the use of functional equations and spectral synthesis in the theory of hypergroups. It also presents the fruitful consequences of this delicate "marriage" where the methods of spectral analysis and synthesis can provide an efficient tool in characterization problems of function classes on hypergroups. This book is written for the interested reader who has open eyes for both functional equations and hypergroups, and who dares to enter a new world of ideas, a new world of methods - and, sometimes, a new world of unexpected difficulties.

Existence Theory for Nonlinear Integral and Integrodifferential Equations
  • Language: en
  • Pages: 230

Existence Theory for Nonlinear Integral and Integrodifferential Equations

The theory of integral and integrodifferential equations has ad vanced rapidly over the last twenty years. Of course the question of existence is an age-old problem of major importance. This mono graph is a collection of some of the most advanced results to date in this field. The book is organized as follows. It is divided into twelve chap ters. Each chapter surveys a major area of research. Specifically, some of the areas considered are Fredholm and Volterra integral and integrodifferential equations, resonant and nonresonant problems, in tegral inclusions, stochastic equations and periodic problems. We note that the selected topics reflect the particular interests of the authors. Donal 0 ...

Integration on Infinite-Dimensional Surfaces and Its Applications
  • Language: en
  • Pages: 280

Integration on Infinite-Dimensional Surfaces and Its Applications

It seems hard to believe, but mathematicians were not interested in integration problems on infinite-dimensional nonlinear structures up to 70s of our century. At least the author is not aware of any publication concerning this theme, although as early as 1967 L. Gross mentioned that the analysis on infinite dimensional manifolds is a field of research with rather rich opportunities in his classical work [2. This prediction was brilliantly confirmed afterwards, but we shall return to this later on. In those days the integration theory in infinite dimensional linear spaces was essentially developed in the heuristic works of RP. Feynman [1], I. M. Gelfand, A. M. Yaglom [1]). The articles of J....

Superanalysis
  • Language: en
  • Pages: 359

Superanalysis

defined as elements of Grassmann algebra (an algebra with anticom muting generators). The derivatives of these elements with respect to anticommuting generators were defined according to algebraic laws, and nothing like Newton's analysis arose when Martin's approach was used. Later, during the next twenty years, the algebraic apparatus de veloped by Martin was used in all mathematical works. We must point out here the considerable contribution made by F. A. Berezin, G 1. Kac, D. A. Leites, B. Kostant. In their works, they constructed a new division of mathematics which can naturally be called an algebraic superanalysis. Following the example of physicists, researchers called the investigatio...

Fluctuation Theory of Solutions
  • Language: en
  • Pages: 383

Fluctuation Theory of Solutions

  • Type: Book
  • -
  • Published: 2016-04-19
  • -
  • Publisher: CRC Press

There are essentially two theories of solutions that can be considered exact: the McMillan-Mayer theory and Fluctuation Solution Theory (FST). The first is mostly limited to solutes at low concentrations, while FST has no such issue. It is an exact theory that can be applied to any stable solution regardless of the number of components and their co

Functional Analysis and Geometry: Selim Grigorievich Krein Centennial
  • Language: en
  • Pages: 314

Functional Analysis and Geometry: Selim Grigorievich Krein Centennial

This is the first of two volumes dedicated to the centennial of the distinguished mathematician Selim Grigorievich Krein. The companion volume is Contemporary Mathematics, Volume 734. Krein was a major contributor to functional analysis, operator theory, partial differential equations, fluid dynamics, and other areas, and the author of several influential monographs in these areas. He was a prolific teacher, graduating 83 Ph.D. students. Krein also created and ran, for many years, the annual Voronezh Winter Mathematical Schools, which significantly influenced mathematical life in the former Soviet Union. The articles contained in this volume are written by prominent mathematicians, former students and colleagues of Selim Krein, as well as lecturers and participants of Voronezh Winter Schools. They are devoted to a variety of contemporary problems in functional analysis, operator theory, several complex variables, topological dynamics, and algebraic, convex, and integral geometry.