You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is the result of a joint venture between Professor Akio Kawauchi, Osaka City University, well-known for his research in knot theory, and the Osaka study group of mathematics education, founded by Professor Hirokazu Okamori and now chaired by his successor Professor Tomoko Yanagimoto, Osaka Kyoiku University. The seven chapters address the teaching and learning of knot theory from several perspectives. Readers will find an extremely clear and concise introduction to the fundamentals of knot theory, an overview of curricular developments in Japan, and in particular a series of teaching experiments at all levels which not only demonstrate the creativity and the professional experti...
This book is the result of a joint venture between Professor Akio Kawauchi, Osaka City University, well-known for his research in knot theory, and the Osaka study group of mathematics education, founded by Professor Hirokazu Okamori and now chaired by his successor Professor Tomoko Yanagimoto, Osaka Kyoiku University. The seven chapters address the teaching and learning of knot theory from several perspectives. Readers will find an extremely clear and concise introduction to the fundamentals of knot theory, an overview of curricular developments in Japan, and in particular a series of teaching experiments at all levels which not only demonstrate the creativity and the professional experti...
This volume contains the proceedings of the ICTS program Knot Theory and Its Applications (KTH-2013), held from December 10–20, 2013, at IISER Mohali, India. The meeting focused on the broad area of knot theory and its interaction with other disciplines of theoretical science. The program was divided into two parts. The first part was a week-long advanced school which consisted of minicourses. The second part was a discussion meeting that was meant to connect the school to the modern research areas. This volume consists of lecture notes on the topics of the advanced school, as well as surveys and research papers on current topics that connect the lecture notes with cutting-edge research in the broad area of knot theory.
This volume contains the proceedings of the AMS Special Session on Algebraic and Combinatorial Structures in Knot Theory and the AMS Special Session on Spatial Graphs, both held from October 24–25, 2015, at California State University, Fullerton, CA. Included in this volume are articles that draw on techniques from geometry and algebra to address topological problems about knot theory and spatial graph theory, and their combinatorial generalizations to equivalence classes of diagrams that are preserved under a set of Reidemeister-type moves. The interconnections of these areas and their connections within the broader field of topology are illustrated by articles about knots and links in spatial graphs and symmetries of spatial graphs in and other 3-manifolds.
In this book the authors develop the theory of knotted surfaces in analogy with the classical case of knotted curves in 3-dimensional space. In the first chapter knotted surface diagrams are defined and exemplified; these are generic surfaces in 3-space with crossing information given. The diagrams are further enhanced to give alternative descriptions. A knotted surface can be described as a movie, as a kind of labeled planar graph, or as a sequence of words in which successive words are related by grammatical changes. In the second chapter, the theory of Reidemeister moves is developed in the various contexts. The authors show how to unknot intricate examples using these moves. The third ch...
Knot theory is a rapidly developing field of research with many applications, not only for mathematics. The present volume, written by a well-known specialist, gives a complete survey of this theory from its very beginnings to today's most recent research results. An indispensable book for everyone concerned with knot theory.
The simultaneously tautological and oxymoronic nature of word / image relations has become a subject of massive debate in the post-modern period. This is not only because of the increasing predominance of word / image messages within our modern media-saturated culture, but also because intellectual disciplines are becoming increasingly sensitized to the essentially hybrid nature of the way we construct meaning in the world. The essays in this volume offer an exemplary insight into both aspects of this phenomenon. Focussing on both traditional and modern media (theatre, fiction, poetry, graphic art, cinema), the essays of Reading Images and Seeing Words are deeply concerned to show how it is according to signifying codes (rhetoric, poetics, metaphor), that meaning and knowledge are produced. Not the least value of this collection is the insight it gives into the multiple models of word / image interaction and the rich ambiguity of the tautological and oxymoronic relations they embody.
An introduction to knot and link invariants as generalised amplitudes for a quasi-physical process. The demands of knot theory, coupled with a quantum-statistical framework, create a context that naturally and powerfully includes an extraordinary range of interrelated topics in topology and mathematical physics.
Martin Gardner's Mathematical Games columns in Scientific American inspired and entertained several generations of mathematicians and scientists. Gardner in his crystal-clear prose illuminated corners of mathematics, especially recreational mathematics, that most people had no idea existed. His playful spirit and inquisitive nature invite the reader into an exploration of beautiful mathematical ideas along with him. These columns were both a revelation and a gift when he wrote them; no one-before Gardner-had written about mathematics like this. They continue to be a marvel. This is the original 1997 edition and contains columns published from 1980-1986.
This book highlights a number of recent research advances in the field of symplectic and contact geometry and topology, and related areas in low-dimensional topology. This field has experienced significant and exciting growth in the past few decades, and this volume provides an accessible introduction into many active research problems in this area. The papers were written with a broad audience in mind so as to reach a wide range of mathematicians at various levels. Aside from teaching readers about developing research areas, this book will inspire researchers to ask further questions to continue to advance the field. The volume contains both original results and survey articles, presenting ...