You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge.
From time to time the International Journal of Fracture has presented matters thought to be of special interest to its readers. In previous special issues (December 1980 and April 1981), Dr H.W. Liu as Guest Editor presented a series of review papers dealing with fatigue processes and characteristics in metals and non-metals. Continuing this policy, which is consistent with our stated objectives, a second review dealing with time depen dence in the fracture process, including the effect of material inertia but essentially excluding very strong shock effects in solids, has been assembled under the generic term "dynamic fracture". We hope that the ensuing state-of-the-art review will yield an instructive and timely product which readers will find useful. To assist us in presenting this subject, we have prevailed upon a well-known worker in dynamic fracture, Dr W.G. Knauss, Professor of Aeronautics and Applied Mechanics, California Institute of Technology to act as Guest Editor for this special double issue. On behalf of the editors and publisher, I wish to express our indebtedness to Professor Knauss and his invited authors for undertaking this special effort.
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
This volume contains the proceedings of the 2000 International Congress of Theoretical and Applied Mechanics. The book captures a snapshot view of the state of the art in the field of mechanics and will be invaluable to engineers and scientists from a variety of disciplines.
Fracture, Fatigue, Failure and Damage Evolution, Volume 5: Proceedings of the 2014 Annual Conference on Experimental and Applied Mechanics, the fifth volume of eight from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: Mixed Mode Fracture I: Emphasis on Modeling Mixed Mode Fracture II: Emphasis on Experimental Measurements Full-Field Measurements of Fracture Microscale & Microstructural Effects on Mechanical Behavior I: Nanoscale Effects Microscale & Microstructural Effects on Mechanical Behavior II: MEMS Microscale & Microstructural Effects on Mechanical Behavior III: Microstructure Microscale & Microstructural Effects on Mechanical Behavior IV: Shape Memory Alloys Fracture & Fatigue of Composites Fracture & Fatigue for Engineering Applications Wave-Based Techniques in Fracture & Fatigue I Wave-Based Techniques in Fracture & Fatigue II: Acoustic Emissions
None