You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In this book, the authors describe a continuum limit of the Toda ODE system, obtained by taking as initial data for the finite lattice successively finer discretizations of two smooth functions. Using the integrability of the finite Toda lattice, the authors adapt the method introduced by Lax and Levermore for the study of the small dispersion limit of the Korteweg de Vries equations to the case of the Toda lattice. A general class of initial data is considered which permits, in particular, the formation of shocks. A feature of the analysis in this book is an extensive use of techniques from the theory of Riemann-Hilbert problems.
This book contains papers based on talks given at the International Conference Dynamical Systems: 100 years after Poincaré held at the University of Oviedo, Gijón in Spain, September 2012. It provides an overview of the state of the art in the study of dynamical systems. This book covers a broad range of topics, focusing on discrete and continuous dynamical systems, bifurcation theory, celestial mechanics, delay difference and differential equations, Hamiltonian systems and also the classic challenges in planar vector fields. It also details recent advances and new trends in the field, including applications to a wide range of disciplines such as biology, chemistry, physics and economics. The memory of Henri Poincaré, who laid the foundations of the subject, inspired this exploration of dynamical systems. In honor of this remarkable mathematician, theoretical physicist, engineer and philosopher, the authors have made a special effort to place the reader at the frontiers of current knowledge in the discipline.
Presenting very recent results in a major research area, this book is addressed to experts and non-experts in the mathematical community alike. The applied issues range from crystallization and dendrite growth to quantum chaos, conveying their significance far into the neighboring disciplines of science.
In this power we show how to compute the parameter space [italic capital]X for the versal deformation of an isolated singularity ([italic capital]V, 0) under the assumptions [italic]dim [italic capital]V [greater than or equal to symbol] 4, depth {0} [italic capital]V [greater than or equal to symbol] 3, from the CR-structure on a link [italic capital]M of the singularity. We do this by showing that the space [italic capital]X is isomorphic to the space (denoted here by [script capital]K[subscript italic capital]M) associated to [italic capital]M by Kuranishi in 1977. In fact we produce isomorphisms of the associated complete local rings by producing quasi-isomorphisms of the controlling differential graded Lie algebras for the corresponding formal deformation theories.
The Institute for Mathematics and its Applications (IMA) devoted its 1997-1998 program to Emerging Applications of Dynamical Systems. Dynamical systems theory and related numerical algorithms provide powerful tools for studying the solution behavior of differential equations and mappings. In the past 25 years computational methods have been developed for calculating fixed points, limit cycles, and bifurcation points. A remaining challenge is to develop robust methods for calculating more complicated objects, such as higher- codimension bifurcations of fixed points, periodic orbits, and connecting orbits, as well as the calcuation of invariant manifolds. Another challenge is to extend the app...
This volume presents new research on normal forms, symmetry, homoclinic cycles, and chaos, from the Workshop on Normal Forms and Homoclinic Chaos held during The Fields Institute Program Year on Dynamical Systems and Bifurcation Theory in November 1992, in Waterloo, Canada. The workshop bridged the local and global analysis of dynamical systems with emphasis on normal forms and the recently discovered homoclinic cycles which may arise in normal forms. Specific topics covered in this volume include normal forms for dissipative, conservative, and reversible vector fields, and for symplectic maps; the effects of symmetry on normal forms; the persistence of homoclinic cycles; symmetry-breaking, both spontaneous and induced; mode interactions; resonances; intermittency; numerical computation of orbits in phase space; applications to flow-induced vibrations and to mechanical and structural systems; general methods for calculation of normal forms; and chaotic dynamics arising from normal forms. Of the 32 presentations given at this workshop, 14 of them are represented by papers in this volume.
In this book, the author introduces and studies the construction of the crossed product of a von Neumann algebra. This construction is the generalization of the construction of the crossed product of an abelian von Neumann algebra by an equivalence relation introduced by J. Feldman and C. C. Moore. Many properties of this construction are proved in the general case. In addition, the generalizations of the Spectral Theorem on Bimodules and of the theorem on dilations are proved.
Exceptional complex Lie groups have become increasingly important in various fields of mathematics and physics. As a result, there has been interest in expanding the representation theory of finite groups to include embeddings into the exceptional Lie groups. Cohen, Griess, Lisser, Ryba, Serre and Wales have pioneered this area, classifying the finite simple and quasisimple subgroups that embed in the exceptional complex Lie groups. This work contains the first major results concerning conjugacy classes of embeddings of finite subgroups of an exceptional complex Lie group in which there are large numbers of classes. The approach developed in this work is character theoretic, taking advantage of the classical subgroups of Eg(C). The machinery used is relatively elementary and has been used by the author and others to solve other conjugacy problems. The results presented here are very explicity. Each known conjugacy class if listed by its fusion pattern with an explicit character afforded by an embedding in that class.
Contributed by close colleagues, friends, and former students of Floris Takens, Global Analysis of Dynamical Systems is a liber amicorum dedicated to Takens for his 60th birthday. The first chapter is a reproduction of Takens's 1974 paper "Forced oscillators and bifurcations" that was previously available only as a preprint of the University of Utrecht. Among other important results, it contains the unfolding of what is now known as the Bogdanov-Takens bifurcation. The remaining chapters cover topics as diverse as bifurcation theory, Hamiltonian mechanics, homoclinic bifurcations, routes to chaos, ergodic theory, renormalization theory, and time series analysis. In its entirety, the book bears witness to the influence of Takens on the modern theory of dynamical systems and its applications. This book is a must-read for anyone interested in this active and exciting field.
This book is intended for graduate students, research mathematicians, and mathematical physicists working in operator algebras.