You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This reference work provides a comprehensive insight into past developments in the application of non-linear dynamics, such as production systems in the manufacturing and process engineering, mechanical engineering and plant construction and automation technology. As such, it is the first publication to document the successful implementation of non-linear dynamics into current tasks or problems of engineering thus far unsolved. The interdisciplinary team of contributors from research and industry establishes ties between mechanical methods of manufacturing and new methods reaching the dynamics of production lines and complete production systems.
This book introduces a novel model-based dexterous manipulation framework, which, thanks to its precision and versatility, significantly advances the capabilities of robotic hands compared to the previous state of the art. This is achieved by combining a novel grasp state estimation algorithm, the first to integrate information from tactile sensing, proprioception and vision, with an impedance-based in-hand object controller, which enables leading manipulation capabilities, including finger gaiting. The developed concept is implemented on one of the most advanced robotic manipulators, the DLR humanoid robot David, and evaluated in a range of challenging real-world manipulation scenarios and tasks. This book greatly benefits researchers in the field of robotics that study robotic hands and dexterous manipulation topics, as well as developers and engineers working on industrial automation applications involving grippers and robotic manipulators.
Eurosymposium Computer Aided Process Engineering
Since the foundation and up to the current state-of-the-art in control engineering, the problems of PID control steadily attract great attention of numerous researchers and remain inexhaustible source of new ideas for process of control system design and industrial applications. PID control effectiveness is usually caused by the nature of dynamical processes, conditioned that the majority of the industrial dynamical processes are well described by simple dynamic model of the first or second order. The efficacy of PID controllers vastly falls in case of complicated dynamics, nonlinearities, and varying parameters of the plant. This gives a pulse to further researches in the field of PID control. Consequently, the problems of advanced PID control system design methodologies, rules of adaptive PID control, self-tuning procedures, and particularly robustness and transient performance for nonlinear systems, still remain as the areas of the lively interests for many scientists and researchers at the present time. The recent research results presented in this book provide new ideas for improved performance of PID control applications.
This treatment of modern topics related to the control of nonlinear systems is a collection of contributions celebrating the work of Professor Henk Nijmeijer and honoring his 60th birthday. It addresses several topics that have been the core of Professor Nijmeijer’s work, namely: the control of nonlinear systems, geometric control theory, synchronization, coordinated control, convergent systems and the control of underactuated systems. The book presents recent advances in these areas, contributed by leading international researchers in systems and control. In addition to the theoretical questions treated in the text, particular attention is paid to a number of applications including (mobile) robotics, marine vehicles, neural dynamics and mechanical systems generally. This volume provides a broad picture of the analysis and control of nonlinear systems for scientists and engineers with an interest in the interdisciplinary field of systems and control theory. The reader will benefit from the expert participants’ ideas on important open problems with contributions that represent the state of the art in nonlinear control.
Inspired by the community behaviors of animals and humans, cooperative control has been intensively studied by numerous researchers in recent years. Cooperative control aims to build a network system collectively driven by a global objective function in a distributed or centralized communication network and shows great application potential in a wide domain. From the perspective of cybernetics in network system cooperation, one of the main tasks is to design the formation control scheme for multiple intelligent unmanned systems, facilitating the achievements of hazardous missions – e.g., deep space exploration, cooperative military operation, and collaborative transportation. Various chall...
This volume contains the contributions to a Workshop on Group Coordination and Cooperative Control held in Tromsø, Norway, 2006, to focus on control theoretic challenges raised by group coordination and cooperation, and lay a foundation for future research. The book covers a wide range of subjects within the area of group coordination and cooperative control, and forms a valuable and up-to-date text on the newer trends in group coordination and cooperative control.
Publishes theoretical and applied original papers in dynamic systems. Theoretical papers present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. Applied papers include modeling, simulation, and corroboration of theory with emphasis on demonstrated practicality.
This two-volume set LNCS 9712 and LNCS 9713 constitutes the refereed proceedings of the 7th International Conference on Swarm Intelligence, ICSI 2016, held in Bali, Indonesia, in June 2016. The 130 revised regular papers presented were carefully reviewed and selected from 231 submissions. The papers are organized in 22 cohesive sections covering major topics of swarm intelligence and related areas such as trend and models of swarm intelligence research; novel swarm-based optimization algorithms; swarming behaviour; some swarm intelligence algorithms and their applications; hybrid search optimization; particle swarm optimization; PSO applications; ant colony optimization; brain storm optimiza...
Roving vigilantes, fear-mongering politicians, hysterical pundits, and the looming shadow of a seven hundred-mile-long fence: the US–Mexican border is one of the most complex and dynamic areas on the planet today. Hyperborder provides the most nuanced portrait yet of this dynamic region. Author Fernando Romero presents a multidisciplinary perspective informed by interviews with numerous academics, researchers, and organizations. Provocatively designed in the style of other kinetic large-scale studies like Rem Koolhaas's Content and Bruce Mau’s Massive Change, Hyperborder is an exhaustively researched report from the front lines of the border debate.