You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book constitutes the refereed proceedings of the 26th International Symposium on Mathematical Foundations of Computer Science, MFCS 2001, held in Marianske Lazne, Czech Republic in August 2001. The 51 revised full papers presented together with 10 invited contributions were carefully reviewed and selected from a total of 118 submissions. All current aspects of theoretical computer science are addressed ranging from mathematical logic and programming theory to algorithms, discrete mathematics, and complexity theory. Besides classical issues, modern topics like quantum computing are discussed as well.
"Categorical Perspectives" consists of introductory surveys as well as articles containing original research and complete proofs devoted mainly to the theoretical and foundational developments of category theory and its applications to other fields. A number of articles in the areas of topology, algebra and computer science reflect the varied interests of George Strecker to whom this work is dedicated. Notable also are an exposition of the contributions and importance of George Strecker's research and a survey chapter on general category theory. This work is an excellent reference text for researchers and graduate students in category theory and related areas. Contributors: H.L. Bentley * G. Castellini * R. El Bashir * H. Herrlich * M. Husek * L. Janos * J. Koslowski * V.A. Lemin * A. Melton * G. Preuá * Y.T. Rhineghost * B.S.W. Schroeder * L. Schr"der * G.E. Strecker * A. Zmrzlina
This book comprises a collection of high quality papers in selected topics of Discrete Mathematics, to celebrate the 60th birthday of Professor Jarik Nešetril. Leading experts have contributed survey and research papers in the areas of Algebraic Combinatorics, Combinatorial Number Theory, Game theory, Ramsey Theory, Graphs and Hypergraphs, Homomorphisms, Graph Colorings and Graph Embeddings.
Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest. In addition to the primary information given in the Handbook, ther...
Constructs a theoretical framework for the study of linear relations and provides underlying concepts, rules, formulae, theorems and techniques. The book compares the inversion, adjoints, completion and closure of various classes of linear operators. It highlights compact and precompact relations.
The featured review of the AMS describes the author’s earlier work in the field of approach spaces as, ‘A landmark in the history of general topology’. In this book, the author has expanded this study further and taken it in a new and exciting direction. The number of conceptually and technically different systems which characterize approach spaces is increased and moreover their uniform counterpart, uniform gauge spaces, is put into the picture. An extensive study of completions, both for approach spaces and for uniform gauge spaces, as well as compactifications for approach spaces is performed. A paradigm shift is created by the new concept of index analysis. Making use of the rich i...
Quasitopoi generalize topoi, a concept of major importance in the theory of Categoreis, and its applications to Logic and Computer Science. In recent years, quasitopoi have become increasingly important in the diverse areas of Mathematics such as General Topology and Fuzzy Set Theory. These Lecture Notes are the first comprehensive introduction to quasitopoi, and they can serve as a first introduction to topoi as well.
This unique mathematical volume brings together geometers, analysts, differential equations specialists and graph-theorists to provide a glimpse on recent mathematical trends whose commonalities have hitherto remained, for the most part, unnoticed. The applied mathematician will be pleasantly surprised with the interpretation of a voting system in terms of the fixed points of a mapping given in the book, as much as the classical analyst will be enthusiastic to find detailed discussions on the generalization of the notion of metric space, in which the metric takes values on an abstract monoid. Classical themes on fixed point theory are adapted to the diverse setting of graph theory, thus uncovering a set of tools whose power and versatility will be appreciated by mathematicians working on either area. The volume also includes recent results on variable exponent spaces which reveal much-needed connections with partial differential equations, while the incipient field of variational inequalities on manifolds, also explored here, will be of interest to researchers from a variety of fields.
This volume contains the accounts of the principal survey papers presented at GRAPHS and ORDER, held at Banff, Canada from May 18 to May 31, 1984. This conference was supported by grants from the N.A.T.O. Advanced Study Institute programme, the Natural Sciences and Engineering Research Council of Canada and the University of Calgary. We are grateful for all of this considerable support. Almost fifty years ago the first Symposium on Lattice Theory was held in Charlottesville, U.S.A. On that occasion the principal lectures were delivered by G. Birkhoff, O. Ore and M.H. Stone. In those days the theory of ordered sets was thought to be a vigorous relative of group theory. Some twenty-five years ago the Symposium on Partially Ordered Sets and Lattice Theory was held in Monterey, U.S.A. Among the principal speakers at that meeting were R.P. Dilworth, B. Jonsson, A. Tarski and G. Birkhoff. Lattice theory had turned inward: it was concerned primarily with problems about lattices themselves. As a matter of fact the problems that were then posed have, by now, in many instances, been completely solved.