You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Remote sensing data and methods are increasingly being implemented in assessments of volcanic processes and risk. This happens thanks to their capability to provide a spectrum of observation and measurement opportunities to accurately sense the dynamics, magnitude, frequency, and impacts of volcanic activity. This book includes research papers on the use of satellite, aerial, and ground-based remote sensing to detect thermal features and anomalies, investigate lava and pyroclastic flows, predict the flow path of lahars, measure gas emissions and plumes, and estimate ground deformation. The multi-disciplinary character of the approaches employed for volcano monitoring and the combination of a...
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 158. The world's largest positive temperature deviation from zonal mean temperatures lies within the realm of the Nordic Seas, comprising bodies of water variously referred to as the Norwegian Sea, the Iceland Sea, and the Greenland Sea. Its role as a mixing cauldron for waters entering from the North Atlantic and the Arctic Oceans, and its function as a major source of deep and abyss water, make our understanding of the Nordic Seas a crucial element in advancing the knowledge of climate dynamics in the Northern Hemisphere. In this context, its small extent (covering only 0.75% of the area of the world's oceans) and its unique location, which allows for accessibility and detailed exploration, are of special significance. The current book speaks to that significance specifically and also to assessing the region's present and future response to, and influence on, global climate change. It is the first such work since B. G. Hurdle's groundbreaking The Nordic Seas (published in 1986).
Magma to Microbe Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 178. Hydrothermal systems at oceanic spreading centers reflect the complex interactions among transport, cooling and crystallization of magma, fluid circulation in the crust, tectonic processes, water-rock interaction, and the utilization of hydrothermal fluids as a metabolic energy source by microbial and macro-biological ecosystems. The development of mathematical and numerical models that address these complex linkages is a fundamental part the RIDGE 2000 program that attempts to quantify and model the transfer of heat and chemicals from “mantle to microbes” at oceanic ridg...
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 152. Sea salt aerosol (SSA) exerts a major influence over a broad reach of geophysics. It is important to the physics and chemistry of the marine atmosphere and to marine geochemistry and biogeochemistry generally. It affects visibility, remote sensing, atmospheric chemistry, and air quality. Sea salt aerosol particles interact with other atmospheric gaseous and aerosol constituents by acting as sinks for condensable gases and suppressing new particle formation, thus influencing the size distribution of these other aerosols and more broadly influencing the geochemical cycles of substances with which they interact. As the key aerosol constituent over much of Earth's surface at present, and all the more so in pre-industrial times, SSA is central to description of Earth's aerosol burden.
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 176. With the search for extra-solar planets in full gear, it has become essential to gain a more detailed understanding of the evolution of the other earth-like planets in our own solar system. Space missions to Venus, including the Soviet Veneras, Pioneer Venus, and Magellan, provided a wealth of information about this planet' enigmatic surface and atmosphere, but left many fundamental questions about its origin and evolution unanswered. This book discusses how the study of Venus will aid our understanding of terrestrial and extra-solar planet evolution, with particular reference to surface and interior processes, atmospheric circulation, chemistry, and aeronomy. Incorporating results from the recent European Venus Express mission, Exploring Venus as a Terrestrial Planet examines the open questions and relates them to Earth and other terrestrial planets. The goal is to stimulate thinking about those broader issues as the new Venus data arrive.
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 163. The North, with its vast and varied landscapes, sparse population, and cold climate has always challenged its explorers: physically, mentally, logistically, and technically. The scientific community in particular has known such challenges in the past and does so today, especially in light of the projected intensification of climate change at high latitudes. Indeed, there are clear signs that change is already ongoing in many environmental variables: Air temperature and annual precipitation (including snowfall) are increasing in many regions; spring snow cover extent is decreasing; lake and river ice freeze-up dates are occurring later and breakup dates earlier; glaciers are retreating rapidly; permafrost temperatures are increasing and, in many cases, the permafrost is thawing; and sea-ice extent is at record minimums and thinning.
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 177. This monograph is the first to survey progress in realistic simulation in a strongly eddying regime made possible by recent increases in computational capability. Its contributors comprise the leading researchers in this important and constantly evolving field. Divided into three parts Oceanographic Processes and Regimes: Fundamental Questions Ocean Dynamics and State: From Regional to Global Scale, and Modeling at the Mesoscale: State of the Art and Future Directions The volume details important advances in physical oceanography based on eddy resolving ocean modeling. It captures the state o...
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 172 .The Kamchatka Peninsula and contiguous North Pacific Rim is among the most active regions in the world. Kamchatka itself contains 29 active volcanoes, 4 now in a state of semi-continuous eruption, and I has experienced 14 magnitude 7 or greater earthquakes since accurate recording began in 1962. At its heart is the uniquely acute subduction cusp where the Kamchatka and Aleutian Arcs and Emperor Seamount Chain meet. Volcanism and Subduction covers coupled magmatism and tectonics in this spectacular region, where the torn North Pacific slab dives into hot mantle. Senior Russian and American aut...
Although geodetic monitoring techniques have been widely used in areas of seismic or volcanic activity, the difficulty inherent to their discrete nature means that they must be deployed carefully to ensure the best possible detection or sensitivity of these points (see e. g. , BALDI and UNGUENDOLI, 1987; JOHNSON and WYATT, 1994; SEGALL and MATTHEWS, 1997; Yu et al. , 2000). In many cases, a more global monitoring method, is required yet at the same time one that offers the highest level of sensitivity which enables detection of the phenomenon. Interferometry radar (InSAR) techniques have been shown to play an important role in seismic and volcanic monitoring because they cover large areas (1...