You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The celebrated Schur-Weyl duality gives rise to effective ways of constructing invariant polynomials on the classical Lie algebras. The emergence of the theory of quantum groups in the 1980s brought up special matrix techniques which allowed one to extend these constructions beyond polynomial invariants and produce new families of Casimir elements for finite-dimensional Lie algebras. Sugawara operators are analogs of Casimir elements for the affine Kac-Moody algebras. The goal of this book is to describe algebraic structures associated with the affine Lie algebras, including affine vertex algebras, Yangians, and classical -algebras, which have numerous ties with many areas of mathematics and mathematical physics, including modular forms, conformal field theory, and soliton equations. An affine version of the matrix technique is developed and used to explain the elegant constructions of Sugawara operators, which appeared in the last decade. An affine analogue of the Harish-Chandra isomorphism connects the Sugawara operators with the classical -algebras, which play the role of the Weyl group invariants in the finite-dimensional theory.
In 1992, students of Bert Green and Angas Hurst conceived the idea of a meeting to commemorate their contributions to Mathematical Physics and to celebrate their passing the milestone of three score years and ten.In designing the scientific program there were two objectives. The first was to cover the full breadth of research in Mathematical Physics at Adelaide University since the founding of the Department of Mathematical Physics with the appointment of Professor Green in 1952. The second was to seek original contributions in areas of current interest and rapid development. The underlying theme was the interaction of mathematics and physics in the key areas of relativity, quantum field the...
Contains the proceedings of the XVIII Latin American Algebra Colloquium, held from August 3-8, 2009, in Sao Paulo, Brazil. It includes research articles as well as up-to-date surveys covering several directions of current research in algebra, such as Asymptotic Codimension Growth, Hopf Algebras, Structure Theory of both Associative and Non-Associative Algebras, Partial Actions of Groups on Rings, and contributions to Coding Theory.
The study of the classical Dirichlet space is one of the central topics on the intersection of the theory of holomorphic functions and functional analysis. It was introduced about100 years ago and continues to be an area of active current research. The theory is related to such important themes as multipliers, reproducing kernels, and Besov spaces, among others. The authors present the theory of the Dirichlet space and related spaces starting with classical results and including some quite recent achievements like Dirichlet-type spaces of functions in several complex variables and the corona problem. The first part of this book is an introduction to the function theory and operator theory of...
This book concentrates on first boundary-value problems for fully nonlinear second-order uniformly elliptic and parabolic equations with discontinuous coefficients. We look for solutions in Sobolev classes, local or global, or for viscosity solutions. Most of the auxiliary results, such as Aleksandrov's elliptic and parabolic estimates, the Krylov–Safonov and the Evans–Krylov theorems, are taken from old sources, and the main results were obtained in the last few years. Presentation of these results is based on a generalization of the Fefferman–Stein theorem, on Fang-Hua Lin's like estimates, and on the so-called “ersatz” existence theorems, saying that one can slightly modify “any” equation and get a “cut-off” equation that has solutions with bounded derivatives. These theorems allow us to prove the solvability in Sobolev classes for equations that are quite far from the ones which are convex or concave with respect to the Hessians of the unknown functions. In studying viscosity solutions, these theorems also allow us to deal with classical approximating solutions, thus avoiding sometimes heavy constructions from the usual theory of viscosity solutions.
Nilsystems play a key role in the structure theory of measure preserving systems, arising as the natural objects that describe the behavior of multiple ergodic averages. This book is a comprehensive treatment of their role in ergodic theory, covering development of the abstract theory leading to the structural statements, applications of these results, and connections to other fields. Starting with a summary of the relevant dynamical background, the book methodically develops the theory of cubic structures that give rise to nilpotent groups and reviews results on nilsystems and their properties that are scattered throughout the literature. These basic ingredients lay the groundwork for the e...
A valuable addition to the Lecture Notes in Pure and Applied Mathematics series, this reference results from a conference held in St. Petersburg, Russia, in honor of Dr. Z. Borevich. This volume is mainly devoted to the contributions related to the European Science Foundation workshop, organized under the framework of noncommuntative geometry and i
The construction of a C∗-algebra from a locally compact groupoid is an important generalization of the group C∗-algebra construction and of the transformation group C∗-algebra construction. Since their introduction in 1980, groupoid C∗-algebras have been intensively studied with diverse applications, including graph algebras, classification theory, variations on the Baum-Connes conjecture, and noncommutative geometry. This book provides a detailed introduction to this vast subject and is suitable for graduate students or any researcher who wants to use groupoid C∗-algebras in their work. The main focus is to equip the reader with modern versions of the basic technical tools used in...
Introduced by Peter Scholze in 2011, perfectoid spaces are a bridge between geometry in characteristic 0 and characteristic $p$, and have been used to solve many important problems, including cases of the weight-monodromy conjecture and the association of Galois representations to torsion classes in cohomology. In recognition of the transformative impact perfectoid spaces have had on the field of arithmetic geometry, Scholze was awarded a Fields Medal in 2018. This book, originating from a series of lectures given at the 2017 Arizona Winter School on perfectoid spaces, provides a broad introduction to the subject. After an introduction with insight into the history and future of the subject ...