You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
La théorie de la gravitation d'Einstein ("relativité générale") est un des piliers de la physique moderne. Cette théorie a connu des développements spectaculaires ces dernières années, aussi bien sur le plan expérimental que sur le plan théorique. En particulier, la théorie des cordes, née il y a une quinzaine d'années, offre des perspectives remarquables d'unification de la force gravitationnelle aux autres forces fondamentales - réalisant ainsi un des vieux rêves d'Einstein. Cet ouvrage rassemble les contributions des experts mondiaux du domaine ayant participé au colloque Francqui qui s'est tenu sur ce thème à Bruxelles du 19 au 21 octobre 2001. Einstein theory of gravit...
Contains selection of expository and research article by lecturers at the school. Highlights current interests of researchers working at the interface between string theory and algebraic supergravity, supersymmetry, D-branes, the McKay correspondence andFourer-Mukai transform.
Theoretical physics is in trouble. At least that’s the impression you’d get from reading a spate of recent books on the continued failure to resolve the 80-year-old problem of unifying the classical and quantum worlds. The seeds of this problem were sewn eighty years ago when a dramatic revolution in physics reached a climax at the 1927 Solvay conference in Brussels. It’s the story of a rush to formalize quantum physics, the work of just a handful of men fired by ambition, philosophical conflicts and personal agendas. Sheilla Jones paints an intimate portrait of the ten key figures who wrestled with the mysteries of the new science of the quantum, along with a powerful supporting cast ...
The 2002 Pan-American Advanced Studies Institute School on Quantum Gravity was held at the Centro de Estudios Cientificos (CECS),Valdivia, Chile, January 4-14, 2002. The school featured lectures by ten speakers, and was attended by nearly 70 students from over 14 countries. A primary goal was to foster interaction and communication between participants from different cultures, both in the layman’s sense of the term and in terms of approaches to quantum gravity. We hope that the links formed by students and the school will persist throughout their professional lives, continuing to promote interaction and the essential exchange of ideas that drives research forward. This volume contains improved and updated versions of the lectures given at the School. It has been prepared both as a reminder for the participants, and so that these pedagogical introductions can be made available to others who were unable to attend. We expect them to serve students of all ages well.
This volume comprises the contributions to the proceedings of Deserfest ? a festschrift in honor of Stanley Deser. Many of Stanley Deser?s colleagues and longtime collaborators, including Richard Arnowitt and Charles Misner of ?ADM? fame, contribute insighted article. Ranging from lower dimensional gravity theories all the way to supergravity in eleven dimensions and M-theory, the papers highlight the wide impact that Deser has had in the field.
A select group of 40 eminent scientists from all parts of the world met to consider the current state of chemical and biological knowledge on the ever-expanding protein universe, and to discuss emerging opportunities for the foreseeable future. Scientific approaches to discover, characterize, and regulate protein functions were discussed over a range of disciplines, including natural product chemistry, microbiology, enzymology, biochemistry, structural biology, chemical biology, and glycobiology. Some notable highlights included discovery of new enzymatic pathways, innovative carbohydrate chemistry, design of proteins containing unnatural amino acids, structural elucidation of complex supramolecular machines, and design and application of small molecule drugs, biologics and biosimilars.This fascinating compendium of scientific presentations and in-depth discussions affords a unique perspective on today's protein chemistry and biology as well as on the challenges for tomorrow.
Distant galaxies, dark matter, black holes – elusive, incomprehensible and inhospitable – these are the building blocks of modern physics. But where do we fit in this picture? For centuries, we have separated mind from matter. While physicists have pursued a theory of ‘everything’ with single-minded purpose, the matter of the mind, of human consciousness, has been conveniently sidestepped and ignored – consigned to priests, philosophers and poets. With the ambition of Stephen Hawking, Carlo Rovelli and Brian Cox, Putting Ourselves Back in the Equation sets out a bold new vision for theoretical physics, unrestricted by sleek equations and neat formulations. Combining cutting-edge neuroscience with the latest in quantum mechanics, acclaimed writer Musser offers a new interpretation of human consciousness. From bizarre cognitive phenomena, like lucid dreaming and self-taught synaesthesia, to the latest technological developments in AI, Musser asks: what can physics teach us about what it means to be human?
Research in string theory has generated a rich interaction with algebraic geometry, with exciting work that includes the Strominger-Yau-Zaslow conjecture. This monograph builds on lectures at the 2002 Clay School on Geometry and String Theory that sought to bridge the gap between the languages of string theory and algebraic geometry.
Chaired by K Wüthrich (Nobel Laureate in Chemistry, 2002) and co-chaired by B Feringa (Nobel Laureate in Chemistry, 2016), this by-invitation-only conference gathered around 40 participants, who are well-recognized leaders in the diverse field of Chemistry. The highlights of the Conference Proceedings include short prepared statements by all the participants, and the recordings of lively discussions on the current and future perspectives in the field of chemistry, with topics ranging from renewable energy and new materials to vaccines.
This thesis offers a fascinating journey through various non-perturbative aspects of Conformal Theories, in particular focusing on the Conformal Bootstrap Programme and its extensions to theories with various degrees of symmetry. Because of the preeminent role of Conformal Theories in Nature, as well as the great generality of the results here obtained, this analysis directly applies to many different areas of research. The content of this thesis is certainly relevant for the physics community as a whole and this relevance is well motivated and discussed along the various chapters of this work. The work is self-contained and starts with an original introduction to conformal theories, defects...