You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Compiling the most influential papers from the IEICE Transactions in Communications, High-Performance Backbone Network Technology examines critical breakthroughs in the design and provision of effective public service networks in areas including traffic control, telephone service, real-time video transfer, voice and image transmission for a content delivery network (CDN), and Internet access. The contributors explore system structures, experimental prototypes, and field trials that herald the development of new IP networks that offer quality-of-service (QoS), as well as enhanced security, reliability, and function. Offers many hints and guidelines for future research in IP and photonic backbone network technologies
Based on more than 30 years of research on differential theories of gratings, this book describes developments in differential theory for applications in spectroscopy, acoustics, X-ray instrumentation, optical communication, information processing, photolithography, high-power lasers, high-precision engineering, and astronomy. Introducing the Fast Fourier Factorization approach to improve the convergence of a truncated series, the book examines multilayers, stacked gratings, crossed gratings, photonic crystals, and isotropic and anisotropic materials; techniques and examples in grating design; and Maxwell equations in a truncated Fourier space.
Tunability has added an important dimension to a variety of laser devices and led to new systems and applications. From laser spectroscopy to Bose-Einstein condensation, the one nexus is the tunable laser. Incorporating nine new chapters since the first edition, Tunable Laser Applications, Second Edition reflects the significant developments
The development of new sources and methods in the terahertz spectral range has generated intense interest in terahertz spectroscopy and its application in an array of fields. Presenting state-of-the-art terahertz spectroscopic techniques, Terahertz Spectroscopy: Principles and Applications focuses on time-domain methods based on femtosecond laser sources and important recent applications in physics, materials science, chemistry, and biomedicine. The first section of the book examines instrumentation and methods for terahertz spectroscopy. It provides a comprehensive treatment of time-domain terahertz spectroscopic measurements, including methods for the generation and detection of terahertz radiation, methods for determining optical constants from time-domain measurements, and the use of femtosecond time-resolved techniques. The last two sections explore a variety of applications of terahertz spectroscopy in physics, materials science, chemistry, and biomedicine. With chapters contributed by leading experts in academia, industry, and research, this volume thoroughly discusses methods and applications, setting it apart from other recent books in this emerging terahertz field.
Providing insider viewpoints and perspectives unavailable in any other text, this book presents useful guidelines and tools to produce effective coatings and films. Covering subjects ranging from materials selection and process development to successful system construction and optimization, it contains expanded discussions on design visualization, dense wavelength division multiplexing, new coating equipment, electrochromic and chemically active coatings, ion-assisted deposition, and optical monitoring sensitivity. Furnishing real-world examples and know-how, the book introduces Fourier analysis and synthesis without difficult mathematical concepts and equations.
Research and applications in optical engineering require careful selection of materials. With such a large and varied array to choose from, it is important to understand a material's physical and optical properties before making a selection. Providing a convenient, concise, and logically organized collection of information, Physical Properties and Data of Optical Materials builds a thorough background for more than 100 optical materials and offers quick access to precise information. Surveying the most important and widely used optical materials, this handy reference includes data on a wide variety of metals, semiconductors, dielectrics, polymers, and other commonly used optical materials. F...
Examining classic theories, experimental methods, and practical formulas for exploration of the core topics in nonlinear optics, the second edition of this acclaimed text was extensively revised to reflect recent advances in the analysis and modification of material properties for application in frequency conversion, optical switching and limiting,
This straightforward text examines the scientific principles, characterization techniques, and fabrication methods used to design and produce high quality optical fibers. Polymer Fiber Optics: Materials, Physics, and Applications focuses on the fundamental concepts that will continue to play a role in future research and applications. This book documents the underlying physics of polymer fibers, particularly aspects of light interaction, and details the practical considerations for a broad range of characterization techniques used to investigate new phenomena. The book presents basic fabrication techniques and protocols that will likely remain useful as new advances address specific processing challenges. The author presents a fresh approach to standard derivations, using numerous figures and diagrams to break down complex concepts and illustrate theoretical calculations. The final chapters draw attention to the latest directions in research and novel applications, including photomechanical actuation, electro-optic fibers, and smart materials.
Where conventional testing and inspection techniques fail at the micro-scale, optical techniques provide a fast, robust, and relatively inexpensive alternative for investigating the properties and quality of microsystems. Speed, reliability, and cost are critical factors in the continued scale-up of microsystems technology across many industries, and optical techniques are in a unique position to satisfy modern commercial and industrial demands. Optical Inspection of Microsystems is the first comprehensive, up-to-date survey of the most important and widely used full-field optical metrology and inspection technologies. Under the guidance of accomplished researcher Wolfgang Osten, expert cont...
It has been five years since the publication of the first edition of Microoptics Technology. In that time, optical technology has experienced an unparalleled burst of activity that has produced a body of significant real results that have advanced new materials, devices, and systems. Building on the foundation of the first edition, this comprehensive reference presents an introduction and review of the optics and methods of microoptic elements with particular emphasis on lenses and lens arrays. The author explores advances that emerged from the flurry of activity over the last five years. With two new chapters and another fully expanded, the book covers current and new methods of fabrication...